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Abstract. In this paper we study left and right ‘regular representations’ ofG = GL∞, an
infinite-dimensional analogue of the classical Lie groupGL(n,C) with entries indexed by the
integers, on a spaceF which we take to be the projective limit of Bargmann–Fock–Segal
spaces. We decomposeF into an orthogonal direct sumF =∑ ⊕̂I(ω) where the hat indicates
the closure of the algebraic direct sum, and where eachI(ω) is irreducible with respect to the
joint left and right action, and the isotypic component of the left or right actions with double
signatures of the type(ω|ω). For eachω, I(ω) is the subspace generated by the joint action on a
highest weight vector1(ω) with highest weightω. We start by defining the groupGL∞ and its
Lie algebragl∞, and discuss the ‘infinite wedge space’,F , defined by Kac, and its transposeF t .
We then define a kind of determinant function onGL∞, prove several identities and properties
of these determinants, and use these to produce intertwining maps from tensor products ofF

andF t to F , thereby obtaining irreducible subspaces and highest weight vectors. We further
adapt these results to representations ofGL∞ on the inductive limit of Bargmann–Fock–Segal
spacesF.

1. Introduction

The use of dual actions of pairs of groups has proven to be a useful tool in the theory of
group representations by describing the irreducible representations of one group in terms of
those of another.

The Schur–Weyl duality theorem (cf [17, 18]) classifies up to isomorphism all irreducible
representations of the symmetric group of the order ofn in terms of all irreducible rational
representations of the general linear group of degreen. Racah, a physicist, discussed
the relation between seniority and isospin, and his ideas were taken up by Moshinsky
and Quesne [12], who then introduced the notion ofcomplimentary pairs[13]. This was
simultaneously generalized by Gross and Kunze in a series of papers starting with [1, 5]
and further developed in [8, 16]. Most notably, Howe [6, 7], gave a general classification of
reductive dual pairsof subgroups of a simplectic group, and this idea was further generalized
by Klink and Ton-That in a series of papers (cf [11]) to that of dual pairs ofrepresentations,
often of seemingly unrelated groups, typically on a Bargmann–Fock–Segal space (or just a
‘Fock’ space) of complex analytic functions of a matrix variable, where such a dual action
is naturally implemented, and where there are applications to quantum physics [2].

In this paper we use this approach to study representations ofGL∞, an infinite-
dimensional analogue of the classical Lie groupGL(n,C), which we take to be the inductive
limit of groups isomorphic toGL(n,C). We realize these representations on a spaceF , the
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space of holomorphic functions onGL∞, which we take to be the projective limit of Fock
spaces isomorphic toF(C(n×n)). We start by definingGL∞ and its Lie algebragl∞, then
construct the spaceF , where we generalize the notion of orthogonality. We then define a
joint action ofGL∞ × GL∞ on F and decomposeF into a multiplicity-free orthogonal
direct sum ∑

⊕̂I(ω)

where eachI(ω) is an irreducibleGL∞×GL∞ module with highest weightω, and also the
isotypic component of the representations ofGL∞ with the signatureω. The hat indicates
the closure of the algebraic direct sum, and the sum is taken over all highest weights(ω, ω).

We achieve this by adapting the results of representations ofGL∞ of the infinite wedge
space,F , described in [9] and [10] and its ‘transpose’F t , on which all irreducible highest
weight representations are known. We then define minor determinant functions ofGL∞
and prove some useful identities, particularly lemma 3.6. With these tools we are able to
produce intertwining maps from tensor products ofF andF t to F , decomposingF into
copies of these known highest weight representations. We use these tools further to analyse
the structure of these highest weight submodules. We further adapt these results to the more
familiar case of representationsGL∞ on the inductive limits of Fock spaces.

2. Preliminaries

Much of this material is from [9] and [10]. For completeness it is included here, modified
to suit our situation.

2.1. Infinite-dimensional vector spaces and matrices

Let

V =
∑
i∈Z
⊕Cνi

be a vector space overC, the complex numbers, with fixed basisνi . We may identify each
νi as a column vector with a 1 in theith position and 0’s elsewhere. Any vectorv in V has
a finite, but arbitrary number of non-zero coordinates. Similarly, we have the vector space

V t =
∑
j∈Z
⊕Cνtj

whereνt denotes the transpose ofν.
The Lie algebra,gl∞, is defined as

gl∞ = {(aij )i,j∈Z ∈ C|aij = 0 for all but finitely manyi, j}
with the Lie bracket just the ordinary matrix commutator product.gl∞ acts as usual by
left matrix multiplication on the vector spaceV , and by right multiplication onV t . If we
denote byEij the matrix with 1 as the(i, j) entry and 0’s elsewhere, then{Eij |i, j ∈ Z}
form a basis forgl∞.

We can regardgl∞ as the Lie algebra of the groupGL∞ where

GL∞ = {A = (Aij )i,j∈Z ∈ C |A invertible andAij − δij = 0 for all but finitely manyi, j}
with the group operation being matrix multiplication, and the usual left action by left
multiplication onV and the usual right action by right multiplication onV t .



Dual representations ofGL∞ and decomposition of Fock spaces 2759

For s, t ∈ Z, s 6 t , let GL(s, t) be the subgroup of matrices acting onV which
stabilizesνj wheneverj < s or j > t . Then the collection of pairs{(s, t)}s6t forms a
directed set with(s, t) 6 (s ′, t ′) whenevers ′ 6 s and t 6 t ′ and we have thatGL∞ is the
direct limit of the subgroupsGL(s, t), denoted somewhat redundantly as

GL∞ = lim−→

⋃
s6t
GL(s, t).

Now for eachs 6 t , GL(s, t) is a Lie group and embeds in the obvious way intoGL(s ′, t ′),
inheriting the subspace topology. We then giveGL∞ the inductive limit topology†, which
we denote by

GL∞ = Ind−→GL(s, t).

This is the topology which makes the inclusion maps

GL(s, t)
Incst
↪→ GL∞

continuous for alls 6 t .
For anys 6 t we also have the associated Lie algebra ofGL(s, t)

glst = {a ∈ gl∞|aij = 0 unlesss 6 i 6 t ands 6 j 6 t}
and in an analogous way we have thatgl∞ is the inductive limit of the vector spacesglst ,

gl∞ = Ind−→

⋃
s6t

glst .

2.2. The infinite wedge spaceF(V )

For any integerm, consider the sequence

m,m− 1, . . . , m− k,m− (k + 1), . . .

which we denote byM. Let Im (or just I if there is no ambiguity) be a finite shuffle of
M. That is, a mapping of finitely many elements ofM to the integersZ that preserves the
order;

I = im, im−1, im−2, . . .

where

(i) im > im−1 > im−2 > · · ·
(ii) ik = k +m for k � 0.

(1)

Then for eachm ∈ Z we construct the spaceF (m)(V ) with basis elements of the form

νI := νim ∧ νim−1 ∧ νim−2 ∧ . . . (2)

where∧ denotes the exterior tensor product, and the indices satisfy (1). The basis elements
of the form (2) are calledsemi-infinite monomialsand are based on finite shuffles of the
indices in the reference vector

νM = νm ∧ νm−1 ∧ νm−2.

We then set

F = F(V ) =
∑
m∈Z
⊕F (m)(V )

† The terminology varies somewhat in the literature. Here we distinguish between thedirect limit, an algebraic
object, and theinductive limit, a topological object.
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and in a completely analogous fashion we construct the space

F t = F(V t ) =
∑
m∈Z
⊕F (m)(V t )

where each spaceF (m)(V t ) has basis elements of the form

νtI := νtim ∧ νtim−1
∧ νtim−2

∧ . . .
and indices also satisfying (1). A positive definite Hermitian form〈·|·〉 is defined by
declaring semi-infinite monomials to be orthonormal, i.e.

〈νI |νJ 〉 = δIJ
linear in the first argument, and conjugate linear in the second.

Left multiplication byGL∞ on V extends in the usual way to a left action,L̃, of GL∞
on F(V ) by

L̃(A)(νIm) = L̃(A)(νim ∧ νim−1 ∧ νim−2 ∧ . . .)
= Aνim ∧ Aνim−1 ∧ Aνim−2 ∧ . . . (3)

for each basis vectorνI of F(V ), and then extending by linearity. We will see that this
action is continuous, so that (3) is a representation of the topological groupGL∞ on F in
the usual sense. By formal differentiation of (3) we obtain a representation ofgl∞ on F
given by

˜̀(a)(νIm) = ˜̀(a)(νim ∧ νim−1 ∧ νim−2 ∧ . . .)
= aνim ∧ νim−1 ∧ νim−2 ∧ . . .
+νim ∧ aνim−1 ∧ νim−2 ∧ . . .
+νim ∧ νim−1 ∧ aνim−2 ∧ . . .
....

We also have the right action, which we denote byR̃

R̃(A)(νtIm) = R̃(A)(νtim ∧ νtim−1
∧ νtim−2

∧ . . .)
= νtimAt ∧ νtim−1

At ∧ νtim−2
At ∧ . . .

and a similar associated Lie algebra action, denoted byr̃.
By construction,˜̀(Eij ) preserves the commutator product and maps eachF (m)(V ) onto

itself, so that if ˜̀m is the restriction of˜̀ to F (m) then

˜̀ =
∑
m∈Z
⊕ ˜̀m.

Since for eachm, F (m)(V ) is the linear span of semi-infinite monomials of the form

ψ = νim ∧ . . . ∧ νim−k ∧ . . .
= ˜̀(Eim,m) . . . ˜̀(Eim−k ,m−k)νM (4)

we have that eachF (m)(V ) is generated by the action ofgl∞ on the reference vector
νM = νm ∧ νm−1 ∧ νm−2 ∧ . . ., and so eachF (m)(V ) is a gl∞ invariant subspace.

Proposition 2.1 (Kac).For eachm ∈ Z the representatioñ̀m of gl∞ on F (m)(V ) is
irreducible.

Note that, if a ∈ gl∞ then a ∈ glst for somes 6 t , and so for anyξ ∈ R the one
parameter subgroup exp(ξa) ⊂ GL(s, t), and hence, using standard techniques, [3, 14], one
can show the following.
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Proposition 2.2.L̃(exp(a)) = exp( ˜̀(a)) for a ∈ gl∞.

Corollary 2.3. If ˜̀ is an irreducible representation ofgl∞ on a vector spaceX, then the
representatioñL of GL∞ onX is also irreducible.

Proposition 2.4 (Kac).Define an involution ongl∞ by a 7→ a† (conjugate transpose). Then
with respect to this involution, the representation˜̀ on F(V ) is ‘unitary’. That is

〈 ˜̀(a)(v)|w〉 = 〈v| ˜̀(a†)(w)〉 a ∈ gl∞ v,w ∈ F(V )

2.3. Weights and weight vectors inF(V )

Let N+ be the upper triangular nilpotent subalgebra ofgl∞.

N+ = {(aij ) ∈ gl∞|aij = 0 for j 6 i}.
Then, since˜̀(Eij )νM = 0 for i < j we have

˜̀(N+)νM = 0

˜̀(Eii)νM = λiνM
where

λi =
{

1 i 6 m
0 i > m

In addition we also have

˜̀
m(Eii)νI = λiνI

for every basis vectorνI in F where,

λi =
{

1 i ∈ I
0 otherwise.

With this in mind, given a collection of numbers

λ = {λi |i ∈ Z}
we define asimple weight

ωI = {λi, i ∈ Z|λi = 1 if i ∈ I, 0 otherwise} (5)

for any shuffleI , and we have the following definition due to [10].

Definition 2.5.Given a collection of numbersλ = {λi |i ∈ Z} called ahighest weight, define
the irreducible highest weight representationπλ of gl∞ as an irreducible representation on
a vector spaceL(λ) which admits a non-zero vectorvλ where

πλ(N+)vλ = 0

πλ(Eii)vλ = λivλ.
The vectorvλ is called thehighest weight vector.

In view of the above definition, we see that for anym ∈ Z, νM is a highest weight
vector of the representatioǹ̃, with highest weight

ωM = {λi |λi = 1 for i 6 m, λi = 0 for i > m}.
Weights of this form are calledfundamental weights, which can be visualized as

ωM = (. . .1, 1, 1, 0, 0, 0, . . .)

with the last 1 appearing in themth position.
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Proposition 2.6 (Kac).The highest weight characterizes the representation up to equiva-
lence.

By corollary 2.3, for eachm ∈ Z, the representatioñL of GL∞ on F (m)(V ) is also
irreducible.

2.4. Kronecker and tensor product representations

Given the representatioñL of GL∞ on F(V ) we define the Kronecker product (or interior
tensor product) of the representationsL̃ (which we also callL̃) of GL∞ on F(V )

⊗
F(V )

by

L̃(A)(ψ1⊗ ψ2) = L̃(A)ψ1⊗ L̃(A)ψ2 for anyψ1, ψ2 ∈ F(V )
and the associated Lie algebra representation (which we also call˜̀) of gl∞ on
F(V )

⊗
F(V ) by

˜̀(a)(ψ1⊗ ψ2) = ˜̀(a)ψ1⊗ ψ2+ ψ1⊗ ˜̀(a)ψ2.

This idea extends inductively to finite tensor products ofF(V ).
Now if ψ1 andψ2 are weight vectors ofF(V ) with corresponding weights

ωI1 = {λ1,i |λ1,i = 1 if i ∈ I1, 0 otherwise}
and

ωI2 = {λ2,i |λ2,i = 1 if i ∈ I2, 0 otherwise}
thenψ1⊗ψ2 is also a weight vector with weightωI1 +ωI2. SinceνM1

andνM2
are highest

weight vectors with highest weightsωM1
andωM2

, then νM1
⊗ νM2

is the highest weight
vector with highest weightωM1

+ ωM2
.

One proves the following in a similar way to the proof of proposition 2.1.

Proposition 2.7.The action ˜̀ of gl∞ on νM1
⊗ νM2

generates an irreducible highest weight
subrepresentation ofgl∞ contained inF (m1)(V )

⊗
F (m2)(V ), the highest weight submodule,

with highest weightωM1
+ ωM2

. By corollary 2.3 this is also an irreducible representation
of GL∞.

Given a vector space such asF(V ) we can form thetensor algebra

T (F (V )) =
∞∑
n=0

⊕(F (V ))⊗n

(where n = 0 corresponds toC) and the representations̃L and ˜̀ extend as above to
representations onT (F (V )).

We summarize the required results of [10] with the following theorem.

Theorem 2.8 (Kac).All irreducible unitary highest weight representations ofgl∞, and
therefore ofGL∞, in T (F (V )) are characterized up to equivalence by highest weights
of the form

ω =
n∑
i=1

kiωMi

where theωMi
are fundamental weights and theki are non-negative integers. Each such

representation can be realized as the module generated by the action˜̀ of gl∞ on the highest
weight vector

νω = ν⊗k1
M1
⊗ · · · ⊗ ν⊗knMn

.
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We denote this highest weight module byF (ω)(V ) and with the obvious modifications, we
obtain identical results for representations onF(V t ), and obtain highest weight module
F (ω)(V t ).

Given the representations̃L andR̃ of GL∞ onF(V ) andF(V t ) respectively, we obtain
the (exterior) tensor product representationL̃

⊗
R̃ of GL∞ ×GL∞ on F(V )

⊗
F(V t )

L̃⊗ R̃(A,B)(νI ⊗ νtJ ) = L̃(A)νI ⊗ R̃(B)νtJ for A,B ∈ GL∞
and also the associated Lie algebra action ofgl∞ × gl∞ given by

˜̀ ⊗ r̃(a, b)(νI ⊗ νtJ ) = ˜̀(a)νI ⊗ νtJ + νI ⊗ r̃(b)νtJ for a, b ∈ gl∞.

These representations extend in the obvious way to representations onT (F (V ))
⊗

T (F (V t )).
Recall thatνI is a weight vector of the representation˜̀ with weight ωI and νtJ is a

weight vector of the representationr̃ with weightωJ . In what follows it will be desirable to
distinguish between weights of the left and right actions, so we say thatνI⊗νtJ has adouble
weight (ωI |ωJ ), and one proves, as in proposition 2.1, thatνM1

⊗ νtM2
is a highest weight

vector of the joint actioñ̀ ⊗ r̃ with highest weight(ωM1
|ωM2

). It follows by induction that
νω1 ⊗ νtω2

is a highest weight vector of̀̃ ⊗ r̃ with highest weight(ω1|ω2). Since tensor
products of irreducible representations are irreducible, the module generated by the joint
action ˜̀ ⊗ r̃ on νω1 ⊗ νtω2

is the unique (gl∞ × gl∞ andGL∞ ×GL∞) irreducible highest
weight submodule ofT (F (V ))

⊗
T (F (V t )) with highest weight(ω1|ω2).

In what follows the case whenω1 = ω2, and the algebraic direct sum of irreducible
highest weight submodules

� =
∑
ω

⊕(F (ω)(V )⊗ F (ω)(V t )). (6)

will be of particular interest.

3. Determinants, representations, and Fock spaces

3.1. Determinants inGL∞

Let A ∈ GL∞. Then from the definition we see that there is a positive integerN such that

aij = δij whenever|i| > N or |j | > N. (7)

Denote by I k the first k terms of the shuffleim > im−1 > im−2 > · · · and
denote byAI

k

J k
the submatrix obtained fromA by taking the intersection of the columns

im > im−1 > · · · > im−k and the rowsjm > jm−1 > · · · > jm−k. Then the function

1Ik

J k (A) = det(AI
k

J k )

is well defined for eachk. Recall that ifI andJ are shuffles, then forn sufficiently large

i(m−n) = −(m+ n) = j(m−n) (8)

i.e. the indices lie in the ‘tail’ of the shuffles, where the shuffles are no longer ‘shuffled’.
Also, for n > N (N as in (7)), thenAi(m−n)j(m−n) = 1, all other entries in thei(m−n)th row
andj(m−n)th column are zero.

Thus, for k sufficiently large, as in (8), and fork > N as in (7) we have, for each
A ∈ GL∞

1Ik

J k (A) = 1Ik+1

J k+1(A) = 1Ik+2

J k+2(A) = · · · (9)

which leads to the following.
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Definition 3.1.For any shufflesI andJ , and for eachA ∈ GL∞
1I
J (A) = lim

k→∞
1Ik

J k (A).

In accordance with the finite-dimensional case, for eachm ∈ Z we can define the
principal minors of A as1M

M(A). We can also define thedeterminantof A as

det(A) = lim
m−→∞1

M

M(A).

It is most useful to consider the function1I
J as the limit of a sequence of functions that

converge pointwise onGL∞. We also remark thatI andJ need not be shuffles of the same
M, but usually are.

The following facts are routinely verified.

Lemma 3.2.Let A ∈ GL∞. I, J shuffles ofM for somem. Then
(1) Aνi is the vector with entries consisting of theith column ofA, i.e.

Aνi =
∞∑

k=−∞
Akiνk

and all but finitely many of theAki = 0.
(2) If |i| > N , N as in (7), thenA acts trivially onνi , i.e.

Aνi =
∑
k

Akiνk =
∑
k

δkiνk = νi.

This corresponds with the previous notion ofGL∞ as an inductive limit.
(3) If im−k < −N (N as in (7)), then1Ik

Jk
(A) = 0 unlessim−k = jm−k.

(4) If jm > N then1I
J = 0 unlessim = jm.

(5) If jm < −N then1I
J (A) = δIJ .

(6) If d is a diagonal matrix inGL∞, then1I
J (d) = 0 unlessI = J .

(7) If K is a shuffle ofM, and B is an upper triangular matrix with entries
. . . , bk, . . . , bk+l , . . . on the principal diagonal, then1M

K (B) = 0 unlessK = M, in which
case1M

M(B) =
∏
j∈M bj . It follows that ifK is a shuffle ofM, andζ is an upper triangular

matrix with ones on the diagonal, then1M

K (ζ ) = 1 if K = M and zero otherwise, since
clearly1M

M(ζ ) = 1. Similarly for the transpose1K
M(ζ

t ).

The following appears in [10] without proof or further comment. A proof is included
here for completeness.

Lemma 3.3.If, as in (3), we define a left action ofGL∞ on F(V ) by

L̃(A)(νI ) = Aνim ∧ Aνim−1 ∧ Aνim−2 ∧ . . .
then

L̃(A)(νI ) =
∑
J

1I
J (A)νJ

whereJ = jm > jm−1 > jm−2 > · · · and the sum is taken over all suchJ ’s. Moreover,
this sum is finite.

Proof. By lemma 3.2(2) we have

L̃(A)νI = Aνim ∧ Aνim−1 ∧ . . . ∧ Aνim−k ∧ νim−k−1 ∧ . . .
for somek whereim−k < −N . Without loss of generality we may assume thatk is large
enough so thatim−n = m− n for all n > k, i.e. im−n lies in the tail ofI .
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So

L̃(A)νI = Aνim ∧ Aνim−1 . . . ∧ Aνim−k ∧ νm−(k+1) ∧ νm−(k+2) ∧ . . . .
Next consider the finite wedge product

Aνim ∧ Aνim−1 ∧ . . . ∧ Aνim−k . (10)

By lemma 3.2(1) each is a vector of finite length. In fact, if we set Max= max{im,N}
then each vector in (10) can be written as

Aνi =
Max∑
s=−N

Asiνs

and so we may cite the results for finite wedge products [15] and write

Aνim ∧ . . . ∧ Aνim−k =
∑

Max>jm>jm−1>···>jm−k>−N
1
im,im−1,...,im−k
jm,jm−1,...,jm−k (A)νjm ∧ νjm−1 ∧ . . . ∧ νjm−k

where the sum is taken over all such shuffles between Max and−N (note thatk 6
[Max− (−N)]).

Thus we can write

L̃(A)νI = L̃(A)(νim ∧ νim−1 ∧ νim−2 ∧ . . .)
= Aνim ∧ Aνim−1 . . . ∧ Aνim−k ∧ νm−(k+1) ∧ νm−(k+2) ∧ . . .
= [L̃(A)νim ∧ νim−1 ∧ . . . ∧ νim−k ] ∧ νim−(k+1) . . .

=
{ ∑

Max>jm>···>jm−k>−N
1
im,...,im−k
jm,...,jm−k (A)νjm ∧ . . . ∧ νjm−k

}
∧ νm−(k+1) ∧ . . . .

Next, as an inductive step, consider

{Aνim ∧ . . . ∧ Aνim−k } ∧ νm−(k+1)

=
{ ∑

Max>jm>···>jm−k>−N
1
im,...,im−k
jm,...,jm−k (A)νjm ∧ . . . ∧ νjm−k

}
∧ νm−(k+1). (11)

Sincem− k < −N , by (9), we have either

1
im,im−1,...,im−k
jm,jm−1,...,jm−k (A) = 1

im,im−1,...,im−k ,im−(k+1)

jm,jm−1,...,jm−k ,jm−(k+1)
(A)

or, if we also havejm−(k+1) 6= m− (k + 1) (= im−(k+1)) then by lemma 3.2(3)

1
im,im−1,...,im−k ,im−(k+1)

jm,jm−1,...,jm−k ,jm−(k+1)
(A) = 0

and so in either case we can write (11) as∑
Max>jm>jm−1>···>jm−k>jm−(k+1)>−(N+1)

1
im,im−1,...,im−k ,im−(k+1)

jm,jm−1,...,jm−k ,jm−(k+1)
(A)νjm ∧ νjm−1 ∧ . . . ∧ νjm−k ∧ νm−(k+1).

Thus forn, sufficiently large,

L̃(A)(νim ∧ νim−1 ∧ . . . ∧ νim−n ∧ νim−(n+1) ∧ . . .)

=
{ ∑

Max>jm>jm−1>···>jm−n
1
im,im−1,...,im−n
jm,jm−1,...,jm−n (A)

×(νjm ∧ νjm−1 ∧ . . . ∧ νjm−n )
}
∧ νjm−(n+1) ∧ . . .

=
{ ∑

Max>jm>jm−1>···>jm−(n+1)

1
im,im−1,...,im−n,im−(n+1)

jm,jm−1,...,jm−n,jm−(n+1)
(A)

×(νjm ∧ νjm−1 ∧ . . . ∧ νjm−n ∧ νjm−(n+1) )

}
∧ νjm−(n+2) ∧ νjm−(n+3) ∧ . . . .
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By letting n→∞ we have

L̃(A)(νim ∧ νim−1 ∧ νim−2 ∧ . . .) =
∑

Max>jm>jm−1>···
1
im,im−1,...

jm,jm−1,...
(A)(νjm ∧ νjm−1 ∧ . . .). (12)

Now, sinceJ is a shuffle ofM, jm has to be greater than or equal tom for any J . Also,
wheneverjm > Max, then1I

J (A) = 0, so this is a finite sum, and we can take this sum
over all J = jm > jm−1 > jm−2 > · · ·. In the sequel, it will be convenient to not have to
keep track of theJ ’s in this sum, and we can write(12) more concisely as:

L̃(A)νI =
∑
J

1I
J (A)νJ .

For future reference we record that

R̃(A)νtI =
∑
J

1I
J (A)ν

t
J .

�
From the inductive limit topology we clearly have the following.

Proposition 3.4.For I, J shuffles ofM, the function1I
J : GL∞ −→ C is continuous.

By [20] the representatioñL is continuous if⇐⇒ the map

φν : GL∞ −→ F(V )

given by

A 7→ L̃(A)ν

is continuous for eachν ∈ F(V ). Checking on the basis elements we have

φνI (A) = L̃(A)νI =
∑
J

1I
J (A)νJ

and so we have the following.

Corollary 3.5. The actionL̃ of GL∞ on F (m)(V ) is continuous. Thus̃L and similarlyR̃
are representations of the topological groupGL∞ on F(V ) andF(V t ) respectively.

The following lemma will be used often in the sequel.

Lemma 3.6.For shufflesI, J of M for somem, A,B ∈ GL∞
1I
K(BA) =

∑
J

1I
J (A)1

J
K(B).

Proof. Let

νI = νim ∧ νim−1 ∧ νim−2 ∧ . . . .
Then sinceL̃ is an action onF(V ) we have

L̃(BA)(νI ) = L̃(B)L̃(A)(νI ). (13)

Applying lemma 3.3 to both sides of (13) we have∑
K

(1I
K(BA))νK =

∑
K

(∑
J

1I
J (A)1

J
K(B)

)
νK.

Since theνK ’s form a basis ofF(V ) and all the sums in sight are finite, we may equate
the coefficients in parenthesis to obtain

1I
K(BA) =

∑
J

1I
J (A)1

J
K(B).

�
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3.2. Projective and inductive limits of Fock spaces

Consistent with the definition of a continuous function, a functionf : GL∞ −→ C is
analytic in the inductive limit topology if the restriction

f |GL(s,t) :−→ C
is analytic for alls 6 t . For reasons to be apparent, we define the set we callG augmented
by

Gaug= {A = (Aij )i,j∈Z |Aij − δij = 0 for all but finitely manyi, j,

but A need not be invertible}
which we take to be the inductive limit of the subsets

G
aug
st = {A ∈ Gaug|Aij − δij = 0, unlesss 6 i, j 6 t}.

Since eachGL(s, t) is an open, dense subset ofGaug
st , GL∞ is an open, dense subset of

Gaug, and clearly we may identifyGaug
st with C(t−s)2.

We define a Gaussian measure onC(t−s)2 as in [11] by setting

dµ = π−(t−s)2 exp(−traceZZ†)dZ

wheredZ is the Lebesgue product measure onC(t−s)2. We then say a functionf : Gaug−→
C is square integrable onGaug if∫

G
aug
st

|f (Z)|2 dµ(Z) <∞ for all s 6 t

and denote byF the set of analytic square-integrable functions onGaug. Given a function
f ∈ F , we will denote byfst the restriction off to Gaug

st and similarly denote byFs,t the
restriction ofF to Gaug

st . Thus, a functionf : Gaug−→ C is analytic square integrable if
and only if fst is analytic square integrable for alls 6 t . CertainlyFs,t ⊂ F for all s 6 t ,
and eachFs,t is a Hilbert space with respect to the inner product

〈f |g〉s,t =
∫
G

aug
st

f (Z)g(Z) dµ(Z) (14)

and the norm

‖f ‖s,t =
∫
G

aug
st

|f (Z)|2 dµ(Z).

As before, the collection{(s, t)}s6t is a directed set, and along with the restriction maps

Resst : F −→ Fs,t
Ress

′t ′
st : Fs ′,t ′ −→ Fs,t

we have thatF is the inverse limit of the Hilbert spacesFs,t .
F = lim←− Fs,t .

We then giveF the topology of theprojective limit†, the topology for which the sets

{(Resst )
−1(Ust )|Ust open inFs,t }

form a base, and write

F = Proj
←−
Fs,t .

As a direct result we have the following.

† Again, we use different terminology to distinguish between an object’s algebraic and topological incarnations.
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Proposition 3.7.The restriction maps Resst : F −→ Fs,t are continuous, and a sequence
fn converges to a functionf in F if and only if (fn)st converges tofst for all s 6 t .

Consistent with the definition of continuous and analytic functions, we also define the
space

P = {p : Gaug−→ C|p|Gaug
st

is a polynomial for alls 6 t}.
Note that the functions1I

J are inP, and certainlyP ⊂ F . We set

Ps,t = P|Gaug
st

and since eachPs,t is a dense, open subset ofFs,t , P is a dense, open subset ofF .
Furthermore, eachPs,t inherits the inner product fromFs,t and it is well known (cf [11])
that the inner product defined by (14), when restricted toP, is equivalent to that defined by

(pst |qst ) = pst (D)qst (Z)|Z=0 (15)

where q(D) denotes the differential operator obtained by formally replacingZij by the
partial derivative∂/∂Zij . This inner product is often easier to compute.

Given thatF is the projective limit of Hilbert spaces, we wish to extend the notion
of orthogonality in a meaningful and useful way. Note that even thoughf 6= g ∈ F , we
can havefst = gst for somes 6 t , with t − s small enough. This motivates the following
definition.

Definition 3.8.f, g ∈ F are orthogonal
←−−−−−−

if 〈f |g〉s,t = 0 for all but finitely manys 6 t†.

The following lemma illustrates this idea.

Lemma 3.9.For anym ∈ Z let I and I ′ (or J and J ′) be shuffles ofM with I 6= I ′

(respectivelyJ 6= J ′). Then the functions1I
J and 1I ′

J (respectively1I
J and 1I

J ′ ) are
orthogonal
←−−−−−−

.

Proof. If I is a shuffle ofM then, as in section 3, denote byI k the firstk terms ofI

I k = im > im−1 > · · · > im−k.

We first show that ifI k andI
′k are as above, withI k 6= I ′k, and if 〈 | 〉 is the inner product

given by (15), then〈1Ik

J k
|1I

′k
J k
〉 = 0. (Similarly, if J k 6= J ′k then〈1Ik

J k
|1Ik

J
′k 〉 = 0.)

The proof is by induction onk. If k = 1, with I k 6= I ′k then

1Ik

J k = 1im
jm
= zimjm 6= zi ′mjm = 1

i ′m
jm
= 1I

′k
J k

and

〈1im
jm
|1i ′m

jm
〉 = ∂/∂zimjm(zi ′mjm) = 0.

Now suppose the hypothesis is true for all determinants withk − 1 rows and columns,
and expand1Ik

J k
by minors. The result then follows directly from the induction hypothesis.

It is then clear that ifI and I ′ are shuffles withI 6= I ′ (respectivelyJ 6= J ′), and
if 〈 | 〉s,t is the inner product (14) restricted toPs,t , then 〈1I

J |1I ′
J 〉s,t = 0 (respectively

〈1I
J |1I

J ′ 〉s,t = 0) for all s sufficiently small and allt sufficiently large. Hence the two
functions are orthogonal

←−−−−−−
. �

† We do not attempt to extend this definition to obtain an inner product or norm onF , and for any givenf ∈ F ,
sups6t ‖f ‖s,t need not be bounded. The interested reader is invited to compare this situation with that in [19].
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Next we note that fors ′ 6 s 6 t 6 t ′, we have the inclusion maps

Incs
′t ′
st : Fs,t −→ Fs ′,t ′

and so can take thedirect limit of the Hilbert spacesFs,t
F0 = lim−→

⋃
s6t
Fs,t

and denote the inclusion map by Incst : Fs,t −→ F0. Since

〈 | 〉s ′,t ′ |Fs,t = 〈 | 〉s,t
the inclusions are isometric embedding ofFs,t into Fs ′,t ′ , so there is no loss of generality
when denoting by‖ · ‖ and 〈 | 〉 the norm and the inner product in everyFs,t and also in
F0. We then set

F = lim−→

⋃
s6t
Fs,t

where the bar indicates the Hilbert space completion with respect to the norm, so thatF is
a Hilbert space, and sayF is the inductive limit, denoted by

F = Ind−→ Fs,t

of the Hilbert spacesFs,t . We remark that the isometric embeddings makes the inclusion
maps continuous. Analogously we set

P0 = lim−→ Ps,t

and takeP to be the topological subspace ofF. Again P is an open, dense subset ofF,
sincePs,t = (Incst )−1(P) is open and dense inFs,t for all s 6 t .

4. Representations ofGL∞ in F

4.1. Regular representations

Definition 4.1.Let F be as in section 3.2, and letG = GL∞. For f, g ∈ F , A, B ∈ G we
define theright regular representationof G on F by

R(A)f = fA
wherefA(z) := f (zA) for all z ∈ Gaug. Similarly we define theleft regular representation
by

L(B)f = fBt
wherefBt (z) := f (Btz) for all z ∈ Gaug. It is routine to verify that these are continuous
actions ofG on F that commute. We giveF a bimodule structure via the joint action of
G×G on F by

L� R(A,B)f (z) = [L(A)� R(B)]f (z) = fAtB(z)
wherefAtB(z) := f (AtzB).

Our aim is to decomposeF under this action.

Remark 4.2.We can also define the (exterior) tensor product of representations on the space
F
⊗
F by

L⊗ R(A,B)[f ⊗ g](z) = L(A)f (z)⊗ R(B)g(z).
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4.2. Weights and weight vectors inF

Let D denote the diagonal subgroup ofG = GL∞. That is

D = {(di,j ) ∈ G|di,j = 0 for i 6= j}
and for l ∈ Z let α = (. . . , αl, αl+1, αl+2, . . .) be a sequence of non-negative integers. For
eachα define a holomorphic characterπ(α) : D −→ C∗ (the non-zero complex numbers)
by

π(α)(d) =
∏
i∈Z
d
αi
i for all d ∈ D.

Note thatπ(α)(d) is well defined for eachd ∈ D.
We sayf is a weight vectorfor the representationL on F with weightα if

L(d)f (z) = π(α)(d)f (z) for all d ∈ D
and we sometimes say thatf transformsL-covariantly with respect toπ(α). We say that
f is a highest weight vectorfor the representationL if f is a weight vector and if

L(ζ )f (z) = f (z) for all ζ ∈ Z+
whereZ+ is the subgroup ofG consisting of upper triangular matrices with ones along the
principal diagonal.

It is routine to verify that the space of functions that transformL-covariantly with
respect toπ(α) form a subspace ofF which is invariant under the right action,R, of G on
F . With the obvious modifications we define weight vectors and highest weight vectors for
the right actionR of G onF , obtaining a subspace ofR-covariant vectors that is invariant
under the left actionL. Since we wish to distinguish between the weights of the left and
right actions, we say thatf ∈ F is a weight vector of the joint actionL� R with weight
(α1|α2) if

L� R(d1, d2)f (z) = π(α1)(d1)π
(α2)(d2)f (z).

Similarly we say thatf1⊗f2 ∈ F⊗F is a weight vector of the tensor product actionL⊗R
with weight (α1|α2) if

L⊗ R(d1, d2)f1⊗ f2(z) = π(α1)(d1)π
(α2)(d2)f1⊗ f2(z).

Proposition 4.3.For eachm ∈ Z, and anyI, J shuffles ofM, the function1I
J is a weight

vector of the representationL with weightωJ and a weight vector of the representationR
with weightωI , whereωI andωJ are the simple weights defined in (5). Thus,1I

J is also
a weight vector for the joint actionL� R with weight (ωI |ωJ ).
Proof. We prove the case forR.

Let d ∈ D, z ∈ Gaug, then

L(d)1I
J (z) = 1I

J (d
tz)

sincedt = d = 1I
J (dz)

by lemma 3.6 =
∑
K

1K
J (d)1

I
K(z)

since1K
J (d) = 0 unlessK = J = 1J

J (d)1
I
J (z)

= π(ωJ )(d)1I
J (z).

�
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Corollary 4.4. For eachm ∈ Z, the function1M

M is a highest weight vector for both the
representationsL andR, with highest weightωM , whereωM is the fundamental weight

defined in section 2.3. Thus,1M

M is also a highest weight vector for the representation

L
⊙
R with highest weight(ωM |ωM). In addition,1M

M ⊗1M

M is a highest weight vector of
the representationL⊗ R with highest weight(ωM |ωM).

Using a similar argument we have the following.

Proposition 4.5.Form1, m2 ∈ Z and forI1, J1 shuffles ofM1 andI2, J2 shuffles ofM2,
the function1I1

J1
1
I2
J2

is a weight vector ofL with weight ωI1 + ωI2, a weight vector of
R with weight ωJ1 + ωJ2, and so a weight vector of the joint actionL

⊙
R with weight

(ωI1 + ωI2|ωJ1 + ωJ2).

Corollary 4.6. For anym1, m2 ∈ Z, the function1M1
M1
1
M2
M2

is a highest weight vector of the
representationsL andR, with weightωM1

+ ωM2
, and so also a highest weight vector of

the joint actionL
⊙
R with weight (ωM1

+ ωM2
|ωM1

+ ωM2
). By induction, the function

1(ω) =
(
1
M1
M1

)k1

. . .
(
1
Mn

Mn

)kn
is a highest weight vector of the representationsL andR with highest weight

ω =
n∑
i=1

kiωMi

and a highest weight vector of the joint actionL
⊙
R with weight (ω|ω).

The following result is fundamental.

Theorem 4.7.The map8(m) : F (m)(V ) −→ F defined on basis elements byνI 7−→ 1
M

I

(and extending by linearity) intertwines the representationsL̃ andL. Similarly, the map
9(m) : F (m)(V t ) −→ F defined on basis elements byνtJ 7−→ 1J

M (and extending by

linearity) intertwines the representationsR̃ andR.

Proof. We prove for the map8(m). Let A ∈ G, νI ∈ F (m)(V ). Then for anyz ∈ Gaug we
have

8(m)[L̃(A)νI ](z)

by lemma 3.3 = 8(m)[
∑
J

1I
J (A)νJ ](z)

by linearity =
∑
J

1I
J (A)8

(m)[νJ ](z)

=
∑
J

1I
J (A)1

M

J (z)

=
∑
J

1J
I (A

t )1
M

J (z)

by lemma 3.6 = 1M

I (A
tz)

= L(A)1M

I (z)

= L(A)8(m)[νI ](z).

�
Remark 4.8.The above theorem is true if, for example, we use the mapνI 7−→ 1K

I for
any fixed shuffleK of M. We will see that the choice ofM instead ofK will give us the
‘lowest highest weight copies’ ofF (m)(V ) andF (m)(V t ) in F .
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Since for eachm ∈ Z, the spacesF (m)(V ) andF (m)(V t ) are irreducible representations
of G, we have the following.

Corollary 4.9. For eachm ∈ Z, let LωM be the image of8(m)(F (m)(V )). ThenLωM is the

left submodule ofF generated by the actionL of G on the highest weight vector1M

M ,
with highest weightωM , andLωM is an irreducible highest weight representation ofG in F .
Similarly, if RωM is the image of9(m)(F (m)(V t )), thenRωM is the right submodule ofF
generated by the actionR of G on the highest weight vector1M

M also with highest weight
ωM , andRωM is an irreducible highest weight representation ofG in F .

By a routine application of lemmas 3.6 and 3.9 we have the following.

Proposition 4.10.If I 6= I ′ (respectivelyJ 6= J ′ ), then all left (respectively right)
translations of1I

J are orthogonal
←−−−−−−

to all left (respectively right) translations of1I ′
J

(respectively1I
J ′ ). HenceLωM1

andLωM2
(respectivelyRωM1

andRωM2
) are orthogonal

←−−−−−−
wheneverM1 6= M2.

The next several propositions expand on these ideas.

Proposition 4.11.Let I1 be a shuffle ofM1 andI2 be a shuffle ofM2. Then the map

8(m1) ⊗8(m2) : F (m1)(V )⊗ F (m2)(V ) −→ F
given by

νI1 ⊗ νI2 7−→ 1
M1
I1
1
M2
I2

intertwines the representatioñL on F(V )
⊗
F(V ) and the representationL on F .

By induction, the map8(m1) ⊗ · · · ⊗8(mn) : F (m1)(V )⊗ · · · ⊗ F (mn)(V ) −→ F defined
on basis elements by

νI1 ⊗ · · · ⊗ νIn 7−→ 1
M1
I1
. . . 1

Mn

In

intertwinesL̃ andL.
Furthermore, for eachm ∈ Z the map

8(m) �9(m) : F (m)(V )⊗ F (m)(V t ) −→ F
defined on basis elements by

νI ⊗ νtJ 7−→ 1J
I

intertwines the representatioñL⊗ R̃ of GL∞ onF (m)(V )⊗F (m)(V t ) and the representation
L� R of GL∞ on F .

Proof. Apply lemmas 3.3, 3.6 and the appropriate definitions. �
By iteration we have the following.

Proposition 4.12.For simplicity of notation let

ω =
n∑
i=1

⊕ωMi

where some of theMi may be repeated. LetI1, J1 shuffles ofM1, . . . , In, Jn shuffles of
Mn, and set

8(ω) = 8(m1) ⊗ · · · ⊗8(mn)

9(ω) = 9(m1) ⊗ · · · ⊗9(mn).



Dual representations ofGL∞ and decomposition of Fock spaces 2773

Then the map

8(ω) �9(ω) : F (m1)(V )⊗ · · · ⊗ F (mn)(V )
⊗

F (m1)(V t )⊗ · · · ⊗ F (mn)(V t ) −→ F
defined by

νI1 ⊗ · · · ⊗ νIn
⊗

νtJ1
⊗ · · · ⊗ νtJn 7−→ 1

J1
I1
· · ·1Jn

In

intertwinesL̃
⊗
R̃ andL

⊙
R.

The following generalizes corollary 4.9.

Corollary 4.13.Let ω and1(ω) be as in corollary 4.6, and letLω be the submodule ofF
generated by the left actionL of G on1(ω), and letRω be the submodule ofF generated
by the right actionR of G on 1(ω). Then Lω andRω are irreducible highest weight
representations ofG with respect to the actionsL andR with highest weightω. Similarly
let I(ω) be the sub-bimodule ofF generated by the joint actionL

⊙
R on 1(ω). Then

I(ω) is an irreducible highest weight representation of the joint actionL
⊙
R with highest

weight (ω|ω).
One checks from the definitions that products of determinant functions are orthogonal

←−−−−−−
whenever any of the terms are orthogonal

←−−−−−−
. For example,

1
I1
J1
1
I2
J2

and 1
I ′1
J ′1
1
I ′2
J ′2

are orthogonal
←−−−−−−

if any of I1 6= I ′1, J1 6= J ′1 etc. From this and proposition 4.10 we have the

following.

Corollary 4.14.I(ω) andI(ω′) are orthogonal
←−−−−−−

if ω 6= ω′.

We further generalize our situation with the following theorem.

Theorem 4.15.Let

� =
∑
ω

⊕
(
F (ω)(V )

⊗
F (ω)(V t )

)
be as in (6). Then the map in proposition 4.12 extends to the map

8�9 : � −→ F
defined by

8�9 =
∑
ω

(8(ω) �9(ω)).

Thus the image

8�9(�) =
∑
ω

⊕I(ω)

is a multiplicity-free orthogonal
←−−−−−−

algebraic direct sum of irreducible highest weight

submodules.
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4.3. Decomposition ofF

Theorem 4.16.Let P be as in section 3.2. Then the function8�9 maps� ontoP.
Thus

P =
∑
ω

⊕I(ω)

where the orthogonal
←−−−−−−

algebraic direct sum is taken over distinct highest weightsω.

Proof. From the classical case [20] we have, for anys 6 t , that the space of polynomials
Ps,t decomposes into an orthogonal algebraic direct sum

Ps,t =
∑
ω

⊕I(ω)st (16)

where eachI(ω)st is the submodule ofPs,t generated by the actionL � R restricted to
GL(s, t)×GL(s, t) on the highest weight vector1(ω)

st (the restriction of1(ω) to Gaug
st ), i.e.

I(ω)st = {1(ω)

AtB |A,B ∈ GL(s, t)}
where, as in section 4.1,

1
(ω)

AtB(z) := 1(ω)(AtzB) for all z ∈ Gaug
st

and the sum in (16) is taken over all

ω =
n∑
i=1

kiωMi

with s 6 mi 6 t†. (In what follows we will describe this situation by writings 6 ω 6 t .)
Now certainlyI(ω)st ⊆ I(ω), and since

8(ω) �9(ω)(F (ω)(V )⊗ F (ω)(V t )) = I(ω)
we have that the intertwining map

8(ω) �9(ω) : F (ω)(V )⊗ F (ω)(V t ) −→ I(ω)st

is onto for anys 6 t .
Since

P = lim
s−→−∞
t−→+∞

Pst

the result follows. �
SinceF = P we have

F =
∑
ω

⊕̂I(ω)

where the hat indicates closure of the algebraic direct sum, and so the sum can be ‘infinite’,
a notion we now make precise.

† Here the classical signatureα = (α1, . . . , αn) with

α1 > α2 > · · · > αn > 0

corresponds to the highest weightω = (. . . , ωs−1, ωs, . . . , ωt , ωt+1, . . .) with

. . . = ωs−1 = ωs > ωs+1 > · · · > ωt = ωt+1 = . . . > 0.
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Theorem 4.17.Any f ∈ F can be written as a series of orthogonal
←−−−−−−

terms

f =
∑
ω

f (ω)

wheref (ω) ∈ I(ω), which converges in the topology of the projective limit.

Proof. Let f ∈ F , then for anys ′ 6 s 6 t 6 t ′ we know that there is a sequence{f (ω)s ′t ′ }ω
in Fs ′,t ′ such that

fs ′,t ′ =
∑
ω

f
(ω)
s ′t ′

and which restricts to

fst =
∑
ω

f
(ω)
st .

SinceF = lim←− Fs,t , there exists a unique sequence{f (ω)} ∈ F that restricts to{f (ω)st }
for all s 6 t . Since

fst =
∑
ω

f
(ω)
st for all s 6 t

we have that

f =
∑
ω

f (ω)

in the topology of the projective limit. That is, if{ω} denotes the collection of all highest
weights, then the map{ω} −→ F completes the following commutative diagram.

�f =
∑
ω

f (ω) {ω}
@
@
@
@
@
@
@R

�
�

�
�

�
�

�	

A
A
A
A
A
A
A
A
A
A
A
A
A
A
AU

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

fs′t ′ =
∑
ω

f
(ω)

s′t ′

fst =
∑
ω

f (ω)st

?

Resst

Ress ′t ′

�
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4.4. Representations inF ⊗ F
As in section 4.2, consider the (exterior) tensor product representationL⊗R of G×G on
F ⊗ F given by

L⊗ R(A,B)(f, g)(Z) = L(A)f (Z)⊗ R(B)g(Z).
Since the map8(m) : F (m)(V ) −→ F intertwines L̃ and L, and the map9(m) :
F (m)(V t ) −→ F intertwinesR̃ andR, the map

8(m) ⊗9(m) : F (m)(V )⊗ F (m)(V t ) −→ F ⊗ F
defined by

νI ⊗ νtJ 7−→ 1
M

I ⊗1J
M

intertwinesL̃⊗ R̃ andL⊗R. Thus, the actionL⊗R of G×G on the highest weight vector
1
M

M ⊗ 1M

M generatesLωM ⊗RωM , which is then an irreducible highest weight submodule
of F ⊗ F with highest weight(ωM |ωM). But the map8(m) � 9(m) of theorem 4.12 also
intertwinesL̃⊗R̃ andL�R and so we must have thatI(ωM) andLωM⊗RωM are isomorphic
asG×G modules. This motivates the following.

Proposition 4.18.Let ω,8(ω), 9(ω) be as in corollary 4.12. Then the map

8(ω) ⊗9(ω) : F (m1)(V )⊗ · · · ⊗ F (mn)(V )
⊗

F (m1)(V t )⊗ · · · ⊗ F (mn)(V t ) −→ F ⊗ F
defined by

νI1 ⊗ · · · ⊗ νIn
⊗

νtJ1
⊗ · · · ⊗ νtJn 7−→ 1

M1
I1
. . . 1

Mn

In
⊗1J1

M1
. . . 1

J1
Mn

intertwines L̃
⊗
R̃ and L

⊗
R. Therefore,Lω ⊗ Rω and I(ω) are isomorphicG × G

modules.

Remark 4.19.It is easy to see that the above isomorphism is given directly by

1
M

I ⊗1J
M 7−→ 1J

I .

4.5. Structure of irreducible modules

Returning to the simple case, whereωM is a fundamental weight, consider the submodule
LωM ⊗RωM of F ⊗ F which is generated by the actionL ⊗ R of G × G on the highest

weight vector1M

M⊗1M

M . Restricting the actionL⊗R of G×G to the subgroupG×Id we

obtain a left submodule [L(G)1M

M ]⊗1M

M of LωM ⊗RωM isomorphic toLωM . Moreover, as

I varies over shuffles ofM, the action ofG×Id on the vectors1M

M⊗1I
M generates distinct

copies ofLωM in LωM ⊗RωM , i.e. the submodules [L(G)1M

M ]⊗1I
M . Since1I

M = 9(m)(νtI )

and theνtI form a basis ofF (m)(V t ), the functions1I
M form a basis ofRωM and we have

(1) LωM ⊗ RωM is a direct sum of copies ofLωM , and also a direct sum of copies of
RωM . These copies are indexed by the set{I |I is a shuffle ofM}.

(2) By remark 4.19 we have thatIωM is isomorphic to a direct sum of copies ofLωM .
Each copy is generated by the left actionL of G on the function1I

M asI ranges over all
shuffles ofM.

(3) Similarly, IωM is isomorphic to a direct sum of copies ofRωM , each generated by

the right actionR of G on the function1M

I .
One could say thatωM is the ‘lowest highest weight’.
We generalize as follows.
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Proposition 4.20.
(1) For

ω =
n∑
i=1

ωMi

(where some of theMi may be repeated) the irreducibleG × G submoduleLω ⊗ Rω of
F ⊗ F is a direct sum of irreducible left submodules, each isomorphic toLω and each
generated by the actionL⊗ R of G× Id on the vector

1
M1
M1
. . . 1

Mn

Mn
⊗1I1

M1
. . . 1

In
Mn

whereI1 is a shuffle ofM1, . . ., In is a shuffle ofMn.
(2) The irreducibleG × G submoduleI(ω) of F is isomorphic to a direct sum of

irreducible leftG-modules, each a copy ofLω, and each generated by the left actionL of
G on the vector

1
I1
M1
. . . 1

In
Mn
.

Similarly, I(ω) is isomorphic to a direct sum of rightG-modules, each isomorphic to
Rω, and each generated by the right actionR on the vector

1
M1
I1
. . . 1

Mn

In
.

From this and the remarks following corollary 4.13 we have the following.

Corollary 4.21.Let LI1,...,In be the irreducible left submodule generated by the vector

1
I1
M1
. . . 1

In
Mn

and letLI ′1,...,I ′n be the irreducible left submodule generated by the vector

1
I ′1
M1
. . . 1

I ′n
Mn
.

Then if f ∈ LI1,...,In and if f ′ ∈ LI ′1,...,I ′n thenf andf ′ are orthogonal
←−−−−−−

.

Now suppose thatL′ is any irreducible left submodule ofF . SinceF = ∑ ⊕̂I(ω),
L′ must intersect someI(ω) non-trivially. But the intersection of left submodules is a left
submodule, and eachI(ω) is a direct sum of irreducible left submodules, soL′ must be a
direct summand ofI(ω) for someω. Therefore we obtain the following.

Proposition 4.22.For each highest weightω, I(ω) is the isotypic componentcharacterized
by ω. That is, eachI(ω) is the direct sum ofall irreducible left submodules isomorphic to
Lω. Similarly, eachI(ω) is the direct sum of all irreducible right submodules isomorphic
to Rω.

4.6. Characterization of highest weight modules

For anyl ∈ Z let β = (. . . , βl, βl+1, βl+2, . . .) be a sequence of non-negative integers with
· · · > βl > βl+1 > βl+2 > · · · (an example of particular interest is whenβ is a highest
weight). LetB denote the Borel subgroup of upper triangular matrices inGL∞. That is

B = {B ∈ G|Bi,j = 0 for i > j}.
For eachβ we define a holomorphic characterπ(β) : B −→ C∗ (the non-zero complex
numbers) by

π(β)(B) =
∏
i∈Z
B
βi
ii for all B ∈ B.
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Note thatπ(β)(B) is well defined for eachB ∈ B. We say a functionf ∈ F transforms
R-covariantly with respect toB with signatureβ if

R(B)f (Z) = π(β)(B)f (Z) for all B ∈ B andZ ∈ Gaug.

Clearly the set of all such functions is a subspace ofF , denoted byV (β), which is invariant
under left translation byG. Via a routine application of lemma 3.6 we see that if1(ω) is a
highest weight vector, then1(ω) ∈ V (ω), and soLω ⊂ V (ω). In fact, if we defineLωst and
V
(ω)
st in the obvious way, that is

Lωst = left submodule generated by the action ofGL(s, t) on1(ω)
st for s 6 ω 6 t

V
(ω)
st = subspace ofFs,t that transformsR-covariantly with respect to

Bst = B
⋂
GL(s, t) with signatureω

then by the Borel–Weil theorem, the two coincide. Taking the limit ass −→ −∞ and
t −→∞ we have the following.

Proposition 4.23.The highest weight left (respectively right) submodule ofF with highest
weightω is characterized by transformingR-covariantly (respectivelyL-covariantly) with
respect to the Borel subgroup, with signatureω.

4.7. Representations ofGL∞ in F and decomposition ofF

Here we discuss our previous results in the more familiar context of an inductive limit of
Hilbert spaces.

Restricting the actionsL andR of GL∞ onF yields the classical left and right actions
we call Lst andRst of GL(s, t) on Fs,t . If ω = ∑

kiωMi
as before we use the notation

s 6 ω 6 t to denote the situation wheres 6 mi 6 t in the above sum. As in the proof
of theorem 4.16, letI(ω)st be the subGL(s, t)×GL(s, t) bimodule generated by the action
Lst � Rst on 1(ω)

st with s 6 ω 6 t . Then it is well known thatI(ω)st is an irreducible
representation ofGL(s, t) × GL(s, t). We also denote byLωst andRωst the irreducible
submodules ofFs,t generated by the left and right actions on the highest weight vector1

(ω)
st .

Now for s ′ 6 s 6 t 6 t ′ the actionLst (or Rst ) of GL(s, t) onFs,t commutes with the
isometric embedding

Incs
′t ′
st : Fs,t ↪→ Fs ′,t ′

and so from the properties of the inductive limit there arises inF a representation ofGL∞
that we call L−→

(or R−→
), uniquely defined by

L−→
(g)f = Lst (g)f wheneverg ∈ GL(s, t) andf ∈ Fs,t

and we construct the representationsL−→
� R−→

and L−→
⊗ R−→

in the obvious way.

Set

I
(ω) = Ind−→ I

(ω)
st .

Since eachI(ω)st is a closed subspace ofFs,t (being finite dimensional),I(ω) is a closed
subspace ofF in the inductive limit topology induced by the norm. ClearlyI(ω)st andI(ω

′)
st

are orthogonal wheneverω 6= ω′, so in this caseI(ω) andI(ω)
′

are also orthogonal. In an
identical fashion we define

Lω = Ind−→ Lωst
Rω = Ind−→Rωst .
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Theorem 4.24.Let I(ω) be the inductive limit Ind−→ I
(ω)
st . Then the representationL−→

� R−→
of

GL∞ ×GL∞ on I(ω) is irreducible.

Proof. We first adapt a result that we will quote from Dixmier [4].

Theorem 4.25.Let A be an algebra with an involution, letH be a Hilbert space, and letπ
be a representation ofA in H. Let L(H) denote the space of linear operators onH. Then
the following are equivalent;

(i) the only closed subspaces ofH which areπ invariant are{0} andH.
(ii) The only elements ofL(H) which commute withπ(A) are the scalars.
(iii) Every vector inH is a cyclic vector.

Now letL(I(ω)) be the space of linear operators onI(ω), and suppose thatO ∈ L(I(ω))
commutes with the operatorsL�R(A,B) for all A,B,∈ GL∞. Let projst : I(ω) −→ I(ω)st

be the projection operator ofI(ω) onto its subspaceI(ω)st . Then projstO commutes with
the operatorsL−→

� R−→
(A,B) (for all A,B,∈ GL(s, t)) in L(I(ω)st ), and since eachI(ω)st is

irreducible, by the above theorem 4.25, projstO must be a scalarcst . But whenevers ′ 6 s
andt ′ > t , eachFs,t embeds isometrically intoFs ′,t ′ , socst must be thesamescalarc for all
s 6 t , and hence the only operator inL(I(ω)) that commutes withO is the scalar operator
c. So by theorem 4.25 again, the spaceI(ω) must be irreducible. �

By an identical argument we have the following.

Proposition 4.26.The actions L−→
and R−→

of GL∞ on the submodulesLω and Rω are

irreducible.

By a routine application of the above techniques we have the following.

Theorem 4.27.Let V (ω)
st be as in section 4.6, letV(ω) = Ind−→V

(ω)
st . Then V(ω) transforms

R−→
-covariantly with respect to the Borel subgroup with signatureω, andV(ω) = Lω.

We have noted before thatPs,t is the orthogonal algebraic direct sum

Ps,t =
∑
s6ω6t

⊕I(ω)st for all s 6 t (17)

so thatFs,t is the Hilbert space direct sum

Fs,t =
∑
s6ω6t

⊕̂I(ω)st for all s 6 t.

We next obtain a similar decomposition for the inductive limitF.

Theorem 4.28.Let F be the inductive limit Ind−→ Fs,t , let I(ω) be the inductive limit Ind−→ I
(ω)
st ,

then

F =
∑
ω

⊕̂I
(ω)

where the Hilbert space direct sum is taken over distinct highest weightsω, and eachI(ω)

is an irreducibleGL∞ ×GL∞ module with respect to the joint actionL� R.
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Proof. We first note that the sum (17) is an algebraic direct sum, so we may interchange
the summation and inductive limit, that is

P = Ind−→ Ps,t

= Ind−→

(∑
⊕I(ω)st

)
=
∑
⊕ Ind−→ I

(ω)
st

=
∑
⊕I

(ω).

Thus,

F = P =
∑
ω

⊕̂I
(ω).

�

Finally, we note that we can realize the notion of highest weight vectors inF by the
abstract symbol1(ω) in the sense that, for anys 6 ω 6 t the restriction of1(ω) to Fs,t is
a highest weight vector with highest weightω, even though the function1(ω) itself is not
in F. By theorem 4.25, any such function generates an irreducible representation.

4.8. Concluding remarks

(1) In this paper we have realized all irreducible highest weight representations ofGL∞
on a projective limit of Fock spaces. The representations on this space seem the most
natural generalizations of the finite-dimensional case, in the sense that highest weights and
highest weight vectors have clear generalizations, and the restriction maps give us back the
finite-dimensional cases. In this context, we also discuss representations on the inductive
limits of Fock spaces, which similarly project onto the finite-dimensional cases. We further
note that we could induce a Hilbert space structure onF from the wedge space via the
intertwining map, but this does not seem very fruitful.

(2) If

U∞ = {A ∈ GL∞|AA† = Id}
then everything proven aboutGL∞ is also true forU∞ via the standard argument of Weyl’s
‘unitarian trick’.
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