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Abstract. In this paper we study left and right ‘regular representationsGo GL,, an
infinite-dimensional analogue of the classical Lie gra@p(n, C) with entries indexed by the
integers, on a spacé& which we take to be the projective limit of Bargmann—Fock—Segal
spaces. We decompogginto an orthogonal direct su = 3~ &Z where the hat indicates
the closure of the algebraic direct sum, and where €this irreducible with respect to the
joint left and right action, and the isotypic component of the left or right actions with double
signatures of the typ@v|w). For eachw, Z“) is the subspace generated by the joint action on a
highest weight vecton () with highest weightw. We start by defining the grou@ L., and its

Lie algebragl,,, and discuss the ‘infinite wedge spacg’, defined by Kac, and its transpogé.

We then define a kind of determinant function 61, prove several identities and properties
of these determinants, and use these to produce intertwining maps from tensor prod#icts of
and F' to F, thereby obtaining irreducible subspaces and highest weight vectors. We further
adapt these results to representationg;éf,, on the inductive limit of Bargmann—Fock-Segal

spacess.

1. Introduction

The use of dual actions of pairs of groups has proven to be a useful tool in the theory of
group representations by describing the irreducible representations of one group in terms of
those of another.

The Schur—Weyl duality theorem (cf [17, 18]) classifies up to isomorphism all irreducible
representations of the symmetric group of the ordet of terms of all irreducible rational
representations of the general linear group of degreeRacah, a physicist, discussed
the relation between seniority and isospin, and his ideas were taken up by Moshinsky
and Quesne [12], who then introduced the notiorcomplimentary paird13]. This was
simultaneously generalized by Gross and Kunze in a series of papers starting with [1, 5]
and further developed in [8, 16]. Most notably, Howe [6, 7], gave a general classification of
reductive dual pairof subgroups of a simplectic group, and this idea was further generalized
by Klink and Ton-That in a series of papers (cf [11]) to that of dual paingpfesentations
often of seemingly unrelated groups, typically on a Bargmann—Fock—Segal space (or just a
‘Fock’ space) of complex analytic functions of a matrix variable, where such a dual action
is naturally implemented, and where there are applications to quantum physics [2].

In this paper we use this approach to study representation§Iqf, an infinite-
dimensional analogue of the classical Lie graup(n, C), which we take to be the inductive
limit of groups isomorphic ta5 L(n, C). We realize these representations on a spfactne

1 E-mail address: hower@uwec.edu
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2758 R M Howe

space of holomorphic functions @iL.,, which we take to be the projective limit of Fock
spaces isomorphic t&(C"*™). We start by defining5 L., and its Lie algebral,,, then
construct the spac&, where we generalize the notion of orthogonality. We then define a
joint action of GLy, X GL On F and decomposé into a multiplicity-free orthogonal

direct sum
S er®

where eacl® is an irreducibleG L., x G L., module with highest weight, and also the
isotypic component of the representationsGi ., with the signatures. The hat indicates
the closure of the algebraic direct sum, and the sum is taken over all highest weigtbs

We achieve this by adapting the results of representatiodslgf of the infinite wedge
space,F, described in [9] and [10] and its ‘transposg’, on which all irreducible highest
weight representations are known. We then define minor determinant functiofig of
and prove some useful identities, particularly lemma 3.6. With these tools we are able to
produce intertwining maps from tensor productsfofand F' to F, decomposingF into
copies of these known highest weight representations. We use these tools further to analyse
the structure of these highest weight submodules. We further adapt these results to the more
familiar case of representatiolsL ., on the inductive limits of Fock spaces.

2. Preliminaries

Much of this material is from [9] and [10]. For completeness it is included here, modified
to suit our situation.

2.1. Infinite-dimensional vector spaces and matrices

Let
V = Z @CU,‘
ieZ
be a vector space ovét, the complex numbers, with fixed basis We may identify each

v; as a column vector wita 1 in theith position and 0's elsewhere. Any vectoin V has
a finite, but arbitrary number of non-zero coordinates. Similarly, we have the vector space

V= Z@C\};
jez
wherev’ denotes the transpose of
The Lie algebragl,,, is defined as
0lee = {(aij)i,jez € Cla;; = 0 for all but finitely manyi, j}

with the Lie bracket just the ordinary matrix commutator produgt,, acts as usual by
left matrix multiplication on the vector spadé, and by right multiplication or¥’. If we
denote byE;; the matrix with 1 as thei, j) entry and O’'s elsewhere, théi&;;|i, j < Z}
form a basis forgl..

We can regard@l,, as the Lie algebra of the grou@L ., where

GL = {A = (Aij)ijez € C |A invertible andA;; — §;; = 0 for all but finitely manyi, j}

with the group operation being matrix multiplication, and the usual left action by left
multiplication onV and the usual right action by right multiplication 6.
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Fors,t € Z, s < t, let GL(s,t) be the subgroup of matrices acting &h which
stabilizesv; wheneverj < s or j > t. Then the collection of pairg(s, )}, forms a
directed set with(s, 1) < (s/, t') whenevers’ < s andr < ¢/ and we have that L, is the
direct limit of the subgroup%; L (s, ¢), denoted somewhat redundantly as

GLo =lim U GL(s,1).

s<t

Now for eachs < 7, GL(s, ) is a Lie group and embeds in the obvious way i6tb(s’, t'),
inheriting the subspace topology. We then giwé ., the inductive limit topology, which
we denote by

GLy =INdGL(s,1).
This is the topology which makes the inclusion maps

Incy,
GL(s,t) — GL

continuous for alls < z.
For anys < ¢ we also have the associated Lie algebraGdf(s, t)

gl = {a € gllaij =0 unlesss <i <t ands < j <t}
and in an analogous way we have tggt is the inductive limit of the vector spacegs,,
gl = Ind{_J gl,,.

s<t

2.2. The infinite wedge spadg(V)

For any integern, consider the sequence
mm—21.... m—km—(k+1),...

which we denote by. Let I,, (or just ! if there is no ambiguity) be a finite shuffle of
M. That is, a mapping of finitely many elements Mfto the integer<Z that preserves the
order;
I = im’ im—la im—25 e
where
(I) im > im—l > im—2 >
- . (1)
(i) ir=k+m for k « 0.

Then for eachn € Z we construct the spacg™ (V) with basis elements of the form
V=V, AVi, AV 5 AL (2)

whereA denotes the exterior tensor product, and the indices satisfy (1). The basis elements
of the form (2) are calledemi-infinite monomial&ind are based on finite shuffles of the
indices in the reference vector

VM = Vn N Vp—1 N\ V2.
We then set
F=F(V)=) @F™V)

mez

1 The terminology varies somewhat in the literature. Here we distinguish betweetiréice limit, an algebraic
object, and thénductive limit a topological object.
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and in a completely analogous fashion we construct the space
F'=FWV)=) @F"™ V"
mez

where each spacE (V') has basis elements of the form

t._ ot t t
ViiI=v Ay A AL

and indices also satisfying (1). A positive definite Hermitian fofrh) is defined by
declaring semi-infinite monomials to be orthonormal, i.e.
(vilvy) =8}
linear in the first argument, and conjugate linear in the second. ~
Left multiplication by GL,, on V extends in the usual way to a left actidn, of GL,
on F(V) by
L(A)(v,) = LA, Avi, , AV , A2
= AUim AN Al),‘mil VAN AUI'”FZ AN (3)
for each basis vector; of F(V), and then extending by linearity. We will see that this
action is continuous, so that (3) is a representation of the topological grdup on F in
the usual sense. By formal differentiation of (3) we obtain a representatigf, 0bn F
given by
a)(vy,) = La) (i, Avi, , AV , A2
= aVi, A Vi, s AVi, , N
+Vi, A @V, A Vi, A

+vi, AV, Aav; , A...

We also have the right action, which we denotefy
R(A( ) = RAv, Av AVE AL

2
=v A'Av; A AV ATALL
and a similar associated Lie algebra action, denoted. by
By constructionE(Eij) preserves the commutator product and maps é4¢h(V) onto
itself, so that if¢,, is the restriction off to F™ then
i = Z Y

mez
Since for eachn, F“ (V) is the linear span of semi-infinite monomials of the form
Y=V, A AV AL

= U(Ei,m) .. L(Ei, ,mi)vu 4)
we have that each”™ (V) is generated by the action @fi,, on the reference vector
UM = Vi A V1 A Vu—2 A ..., @and SO eacl¥ ™ (V) is agl,, invariant subspace.
Proposition 2.1 (Kac)For eachm e Z the representatiorf,, of gl,, on F"™ (V) is
irreducible.

Note that, ifa € gl thena € gl;, for somes < ¢, and so for any¢ € R the one
parameter subgroup e¢gu) C GL(s, t), and hence, using standard techniques, [3, 14], one
can show the following.
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Proposition 2.2.L(exp(a)) = exp({(a)) for a € gl,..

Corollary 2.3. If ¢ is an irreducible representation gf,, on a vector space, then the
representatior. of GL,, on X is also irreducible.

Proposition 2.4 (Kac)Define an involution omgl,, by a — a' (conjugate transpose). Then

with respect to this involution, the representatibon F (V) is ‘unitary’. That is
@) = @ll@)Hw)  acgly,  v,weFV)

2.3. Weights and weight vectors R(V)

Let A, be the upper triangular nilpotent subalgebragbf.
Ny = {(a;j) € glolai; =0 for j <i}.

Then, since/(E;;)vy = 0 for i < j we have

(N =0
Z(Eii)\}ﬂ = )\,’VM
where
{ 1 i<m
Aj .
0 i>m

In addition we also have

Cn(Eii)vy = hivy
for every basis vector; in F where,

" {1 i€l

0 otherwise.

With this in mind, given a collection of humbers

A= {Nli € Z}
we define asimple weight

w;={\,i € Z|r; =1if i € I, 0 otherwisé (5)
for any shufflel, and we have the following definition due to [10].

Definition 2.5.Given a collection of numbers = {A;|i € Z} called ahighest weightdefine
the irreducible highest weight representation of gl,, as an irreducible representation on
a vector spacd. (1) which admits a non-zero vectoy where

mWNPv, =0
7. (Eii) vy = Ay
The vectorv, is called thehighest weight vector

In view of the above definition, we see that for amye Z, vy is a highest weight
vector of the representatiah with highest weight

oy = {AA; =1fori <m, A, =0fori > m}.

Weights of this form are calletindamental weightswvhich can be visualized as
oy =(..1,110,00,...)

with the last 1 appearing in theth position.
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Proposition 2.6 (Kac).The highest weight characterizes the representation up to equiva-
lence.

By corollary 2.3, for eachn € Z, the representatiod. of GL., on F™ (V) is also
irreducible.

2.4. Kronecker and tensor product representations
Given the representatiofn of GLy on F(V) we define the~Kr0necker product (or interior
tensor product) of the representatiabhgwhich we also callL) of GL,, on F(V) &) F(V)
by
LAY W1®Y2) = LAW1® LAY,  foranyyu, ¥ € F(V)
and the associated Lie algebra representation (which we also pabf gl on
F(V)Q F(V) by
@)Y ® ¥2) = @1 @ Y2 + Y1 ® La)P2.
This idea extends inductively to finite tensor products@l).
Now if ¢, andr, are weight vectors of (V) with corresponding weights
o, = {AilA; =1if i € I3, O otherwisé
and
wp, ={r2ilhz; =1if i € I, 0 otherwis¢

thenyr, ® v is also a weight vector with weight;, + w;,. Sincevy, andvy, are highest
weight vectors with highest weightsy,, andwy,, thenvy, ® vy, is the highest weight
vector with highest weighty, + wp, .

One proves the following in a similar way to the proof of proposition 2.1.

Proposition 2.7.The action? of gl on vy, ® vy, generates an irreducible highest weight
subrepresentation gff,, contained inF ™V (V) & F™2 (V), the highest weight submodule,
with highest weightwy, + wy,. By corollary 2.3 this is also an irreducible representation
of GL.

Given a vector space such &%V) we can form thaensor algebra

T(F(V)) =) @®(F(V)®"

n=0

(wheren = 0 corresponds tdC) and the representations and ¢ extend as above to
representations ofi (F(V)).
We summarize the required results of [10] with the following theorem.

Theorem 2.8 (Kac)All irreducible unitary highest weight representations gif,, and
therefore of GL., in 7(F(V)) are characterized up to equivalence by highest weights
of the form

n
W= E kiwpy,
i=1

where thewy, are fundamental weights and tie are non-negative integers. Each such

representation can be realized as the module generated by theaofigh,, on the highest
weight vector

ok ®k
vw = ‘)Mll ® e ® UMH”.
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We denote this highest weight module BY* (V) and with the obvious modifications, we
obtain identical results for representations BV’), and obtain highest weight module
F@ .
Given the representatiorisandl? of GLy on F(V) and F (V") respectively, we obtain
the (exterior) tensor product representatio®) R of GLo, x GLs 0N F(V) Q) F(V?')
L®R(A, B)(v; ® V) = L(A)v; ® R(B)V, for A,B € GLo
and also the associated Lie algebra actioglgf x gl., given by
(@7 (a,b)(v; ® V) = L(a)v; @V, + vy QF (b)Y fora,b e gl...
These representations extend in the obvious way to representatioriB(BaV)) Q)
T(F(V"). i
Recall thatv; is a weight vector of the representatiérwith weight w; andv’, is a
weight vector of the representatiérwith weightw;,. In what follows it will be desirable to
distinguish between weights of the left and right actions, so we saytigat’, has adouble
weight (w;|w;), and one proves, as in proposition 2.1, thgt ® ”5\,42 is a highest weight
vector of the joint actiorf ® 7 with highest weight(wa, |wa,). It follows by induction that

Vo, ® v, IS @ highest weight vector of ® 7 with highest weight(wi|w,). Since tensor
products of irreducible representations are irreducible, the module generated by the joint
action? ® 7 on Vo, ® v, is the unique §l, x gl, andGL x G L) irreducible highest
weight submodule of (F(V)) ® 7 (F(V")) with highest weight(w;|w,).

In what follows the case whet; = w,, and the algebraic direct sum of irreducible
highest weight submodules

Q=) eF“WV)®F“V). Q)

will be of particular interest.

3. Determinants, representations, and Fock spaces

3.1. Determinants iz L,

Let A € GL,. Then from the definition we see that there is a positive intégeuch that
a;j = &j wheneverli| > N or |j| > N. (7)
Denote by I* the first k terms of the shufflei,, > i,_1 > in_—> > --- and
denote byAfk the submatrix obtained from by taking the intersection of the columns
Im > ip—1 > -+ > in_ and the rowsj,, > j,_1 > --- > ju—x. Then the function
Al (A) = det(A),)
is well defined for eaclt. Recall that iff andJ are shuffles, then fot sufficiently large
i(m—n) = _(m + }’l) = j(m—n) (8)

i.e. the indices lie in the ‘tail’ of the shuffles, where the shuffles are no longer ‘shuffled’.
Also, forn > N (N as in (7)), thenA = 1, all other entries in the,,_, th row
and j,—nth column are zero.

Thus, fork sufficiently large, as in (8), and fot > N as in (7) we have, for each
A€ GLy

i(m—n)j(m—n)

k+1 Jk+2

Al(A) = ALL(A) = ALL(A) = ©)
which leads to the following.
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Definition 3.1.For any shuffled and J, and for eachd € GL
Aj(A) = lim A (A).

In accordance with the finite-dimensional case, for eacke Z we can define the
principal minorsof A as A%(A). We can also define th@eterminantof A as

detd) = lim Ay (A).

It is most useful to consider the function’ as the limit of a sequence of functions that
converge pointwise o L,. We also remark that andJ need not be shuffles of the same
M, but usually are.

The following facts are routinely verified.

Lemma 3.2Let A € GL. I, J shuffles ofM for somem. Then
(1) Av; is the vector with entries consisting of thigh column ofA, i.e.

o0
Ay, = Z Akivi

k=—00

and all but finitely many of thed;; = 0.
(2) If |i| > N, N as in (7), thenA acts trivially onv;, i.e.

Av; = ZAkin = Z(Skivk = V.
k k

This corresponds with the previous notion®@f., as an inductive limit.

(3) If im—t < —N (N as in (7)), thenAs (A) = 0 unlessi,i—x = ju—+.

(@) If j,, > N thenA’ =0 unlessi,, = ji,.

(5) If j. < —N thenAl(A) = 6).

(6) If d is a diagonal matrix irG L+, thenA’ (d) = 0 unlessl = J.

(7) If K is a shuffle of M, and B is an upper triangular matrix with entries
weoybg, ..., by, ... ON the principal diagonal, theﬁ%(B) = 0 unlessk = M, in which
caseA%(B) = [[jem b;- It follows that if K is a shuffle ofd, and¢ is an upper triangular
matrix with ones on the diagonal, theﬂnAKl(;) = 1if K = M and zero otherwise, since
clearly A}7(¢) = 1. Similarly for the transposaX ().

The following appears in [10] without proof or further comment. A proof is included
here for completeness.

Lemma 3.3If, as in (3), we define a left action &' L., on F(V) by

L(A)(v)) = Av, AAy,  ANAv AL
then

LAY () =Y Aj (A,

J

whereJ = j, > ju_1 > jm—2 > --- and the sum is taken over all sudts. Moreover,
this sum is finite.
Proof. By lemma 3.2(2) we have

LAy, = Av;, ANAv, A .ANAV, AV AL

for somek wherei,, ; < —N. Without loss of generality we may assume thas large
enough so that, , =m —n for all n > &, i.e.i,,_, lies in the tail ofI.
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So
L(Ayv, = Avi NAv . NAYL AVt ) A Vp— ) A e
Next consider the finite wedge product
Avy, NAv, AN A (20)

By lemma 3.2(1) each is a vector of finite length. In fact, if we set Maxnax{i,,, N}
then each vector in (10) can be written as

Max
AV,' = E AS,’VS
s=—N

and so we may cite the results for finite wedge products [15] and write
Avi AL AAy, = > Almimbe ek (A A v A LAY

Jmsdm—1sees Jm—k
Maxz jiu > jm-1>++> jm—k=2—N
where the sum is taken over all such shuffles between Max -aNd (note thatk <
[Max — (=N)]).
Thus we can write

LAy, = L(A)(Vlm A Vi g ANVi, o A )
= Al),-m N Avi’%l VAN Al),-mik A Vin—k+1) N Vim—k+2) N\ - - -

= [L(A)\),'m AVi, i ANl A \),'”Hk] AN

imseesimt
Aj:z,...,j::,fk (A)ij VANPIAVAN l)jmk} AN Vn—k+1) N o ee

{ Max jiy>-> jm—k >—N
Next, as an inductive step, consider
{AU,'”, AN A Av,-m_k} N Vin—(k+1)

= A;’r:::l]r:’n:i (A)vjm AREERA vjm—k } A U,n_(k+1)- (11)

{ Maxz jiy >-+> jim—k 2—N
Sincem — k < —N, by (9), we have either
sim—seeerim—k A bmaim—1ses ko Im— (k41
A g A = B ki ()
or, if we also havej,_k+1) #m — (k + 1) (= i,—xk+1)) then by lemma 3.2(3)
Iy bm—1seeesTm—k s im—(k+1) _
Ajm7jm—17---vjm—kvjm—(k+1) (4) = 0

and so in either case we can write (11) as

T lm—1s s im—k > im—(k+1) ) ) )
Z A Jontes Jon—Ge+1) (A)Vj, AVj s A e AV A Vi ety

Maxz ju > jim—-1>+> jm—k > jm—+1=—(N+1)
Thus forn, sufficiently large,

L(A)(U,'m AV g N o AV A Vi iy N J)

— Aim7i»vx—1,---qi»11—n (A)

Jims Jm—1s+vs Jm—n

{ MaXz jiu > jm—1>+++> jm—n

XV, AV AL A vjm_n)} AV iy N e

_ Imslm—1seeesim—n>im—(n+1)

- { Z Ajm’jm—l’---n,/‘m—mjm—(rH»I) (A4)
Maxz jm > jm-1>"> jm—@m+1)

X(ij AVjy g N e AVj A Ujm(n+1))} AV wiz) N Vi N e
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By letting n — oo we have
LAYy, Aviyy Avig A= Y AT (A (o, A AL, (12)

Maxz j,, > jm—1>-
Now, sinceJ is a shuffle ofM, j, has to be greater than or equalmofor any J. Also,
wheneverj,, > Max, thenAﬁ(A) = 0, so this is a finite sum, and we can take this sum
overallJ = j, > ju_1> ju_2 > ---. In the sequel, it will be convenient to not have to
keep track of theJ’s in this sum, and we can writ€l2) more concisely as:

LAy, =) AlA),.
J

For future reference we record that
R(Aw, =Y Al (A
J

From the inductive limit topology we clearly have the following.
Proposition 3.4.For 1, J shuffles ofM, the functionA’ : GL., —> C is continuous.
By [20] the representatiod is continuous if<> the map
¢, GLo — F(V)
given by
A+ L(Av
is continuous for each € F(V). Checking on the basis elements we have
i (A) = LAy = ) Aj(A),
J

and so we have the following.

Corollary 3.5. The actionL of GL,, on F™ (V) is continuous. Thud and similarly R
are representations of the topological gra@p., on F(V) and F (V") respectively.

The following lemma will be used often in the sequel.
Lemma 3.6For shufflesl, J of M for somem, A, B € GL
AR (BA) =Y Aj(A)AL(B).
J

Proof. Let

vy =V, AN Vi1 AN Vi_o VANTI
Then sincel is an action onF (V) we have

L(BA)(v;) = L(B)L(A)(v). (13)
Applying lemma 3.3 to both sides of (13) we have

D (AR(BA)vg =) (Z Aﬂ(A)A{((B))vK.
K K J

Since thevg's form a basis ofF (V) and all the sums in sight are finite, we may equate
the coefficients in parenthesis to obtain

AR (BA) =" Aj(A)AL(B).
J
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3.2. Projective and inductive limits of Fock spaces

Consistent with the definition of a continuous function, a functipn GL,, — C is
analytic in the inductive limit topology if the restriction
flers.n i— C
is analytic for alls < r. For reasons to be apparent, we define the set weaiscaligmented
by
G*9={A = (Aij); jez]|Ai; — 8;; = 0 for all but finitely manyi, j,
but A need not be invertible
which we take to be the inductive limit of the subsets
GL%={A € G™A;; —8; =0, unlesss < i, j <1).
Since eachG L(s, t) is an open, dense subset 6f.°, GL,, is an open, dense subset of
G249, and clearly we may identifg®'9 with C¢—7*,
We define a Gaussian measure®fr>’ as in [11] by setting
du = 7~ exp(—tracez Z")d Z

wheredZ is the Lebesgue product measure@r*’. We then say a functioff : G399 —
C is square integrable orG249 if

/auglf(Z)lzdu(Z) <00 for all s <t
G

st

and denote byF the set of analytic square-integrable functions@#? Given a function
f € F, we will denote byf,, the restriction off to G5 and similarly denote byF, ; the

restriction of F to G%'%. Thus, a functionf : G29 — C is analytic square integrable if

and only if f;; is analytic square integrable for all< ¢. Certainly 7, , Cc F for all s < 1,
and eachF; ; is a Hilbert space with respect to the inner product

e = [ 1@ duz) (14)
and the norm

1 flles = /G @A),

K

As before, the collectiofi(s, ¢)},<, is a directed set, and along with the restriction maps

Res, : F — Fi.,
Res’ : Fy, — Fus

we have thatF is theinverse limitof the Hilbert spaces- ;.
F = Ii(_m Fir-

We then giveF the topology of theprojective limit, the topology for which the sets
{(Res,)"Y(U,,)|Uy; open inF,,}

form a base, and write
F = ProjFs,;.

As a direct result we have the following.

1 Again, we use different terminology to distinguish between an object’s algebraic and topological incarnations.
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Proposition 3.7.The restriction maps Rgs: F — F,, are continuous, and a sequence
f» converges to a functiorf in F if and only if (f,)s, converges tof;, for all s < r.

Consistent with the definition of continuous and analytic functions, we also define the
space

P ={p:G*— C|p|sm is a polynomial for alls < r}.
Note that the function&/ are inP, and certainly? C F. We set
Py = Plgae

and since eaclP;, is a dense, open subset 6f,, P is a dense, open subset &f.
Furthermore, eacl®,; inherits the inner product fronf;, and it is well known (cf [11])
that the inner product defined by (14), when restricte@tas equivalent to that defined by

(pst|qxt) = Pst (D)CIw (2)|Z=O (15)

where g(D) denotes the differential operator obtained by formally replaciig by the
partial derivatived/dZ;;. This inner product is often easier to compute.

Given thatF is the projective limit of Hilbert spaces, we wish to extend the notion
of orthogonality in a meaningful and useful way. Note that even thofigh ¢ € F, we
can havef,, = g, for somes < ¢, with t — s small enough. This motivates the following
definition.

Definition 3.8. f, g € F are orthogonaif (f|g)s, = 0 for all but finitely manys < ¢t.

«~—

The following lemma illustrates this idea.

Lemma 3.9For anym € Z let I and I’ (or J and J’) be shuffles ofM with I # I’
(respectivelyJ # J'). Then the functionsA’ and A!' (respectivelyA’ and A’)) are

orthogonal
—

Proof. If I is a shuffle ofM then, as in section 3, denote BY the firstk terms of/
IF =iy >ip1 > > i

We first show that iff* and'’* are as above, witli* % 1'%, and if ( | ) is the inner product
given by (15), thentAZ, |AT[) = 0. (Similarly, if J* 3 J* then(AZ,|AT,) =0))
The proof is by induction ot. If k = 1, with I* # I'* then
A= Al =1, # 2, = A = Al
and
(A;: |A;Z) = 8/8z,~mj,,, (Zi,/“jm) =0.
Now suppose the hypothesis is true for all determinants withl rows and columns,
and expandﬁ’fk by minors. The result then follows directly from the induction hypothesis.
It is then clear that iff and I’ are shuffles withl # I’ (respectivelyJ # J'), and
if (| ), is the inner product (14) restricted ®,,, then (A’ AT, = 0 (respectively
(AT|AL)s, = 0) for all s sufficiently small and alk sufficiently large. Hence the two

functions are orthogonal O
<~

1 We do not attempt to extend this definition to obtain an inner product or norfA,@md for any givenf € F,
SUp, Il flls., need not be bounded. The interested reader is invited to compare this situation with that in [19].
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Next we note that fos’ < s <t < ¢/, we have the inclusion maps
'nc.i;” cFsa —> Fyw
and so can take theirect limit of the Hilbert spaces; ;
o =lim|_J 7.,

s<t
and denote the inclusion map by lpc ¥, — Fo. Since
(Dselr, = s

the inclusions are isometric embedding&f; into Fy ,, so there is no loss of generality
when denoting by - || and( | ) the norm and the inner product in evefy, and also in
Fo. We then set

F=lim( .
s<t

where the bar indicates the Hilbert space completion with respect to the norm, gpishat
a Hilbert space, and s&y is theinductive limit denoted by

S: = Ind]:gJ

of the Hilbert spaces; ;. We remark that the isometric embeddings makes the inclusion
maps continuous. Analogously we set

230 = lim Ps,t

and take’3 to be the topological subspace $f Again 3 is an open, dense subset §f
since P, = (Inc,,)~1(P) is open and dense i, for all s < r.

4. Representations ofGL, in F

4.1. Regular representations

Definition 4.1.Let F be as in section 3.2, and |6t = GL,. For f,g € 7, A, B € G we
define theright regular representatiorof G on F by

R(A)f = fa
where f4(z) := f(zA) for all z € G2%. Similarly we define théeft regular representation
by

LB)f = fm

where f5:(z) := f(B'z) for all z € G®9. It is routine to verify that these are continuous
actions ofG on F that commute. We giveéF a bimodule structure via the joint action of
G x G on F by

LOR(A, B)f(z) =[L(A) © R(B)]f(2) = fap(2)
WherefAtB(Z) = f(AtZB)
Our aim is to decomposé& under this action.

Remark 4.2We can also define the (exterior) tensor product of representations on the space
FQ F by

L®R(A, B)[f ®gl(z) = L(A) f(z) ® R(B)g(2).
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4.2. Weights and weight vectors f
Let D denote the diagonal subgroup 6f= GL,. That is
D ={(d; ;) € Gld;;; =0 fori # j}

and forl e Z leta = (..., o, a;11, 012, .. .) be a sequence of non-negative integers. For
eacha define a holomorphic charactef® : D —s C* (the non-zero complex numbers)

by
7@d) = l—[df“' for all d € D.
i€’
Note thatr @ (d) is well defined for eacld € D.
We say f is aweight vectorfor the representatiod on F with weight o if

L@d)f(z) =7 f(z) foralld € D

and we sometimes say thgt transformsL-covariantly with respect tor@. We say that
f is ahighest weight vectofor the representatiod if f is a weight vector and if

L) f(2) = f(2) forall¢ e Z,

whereZ, is the subgroup o& consisting of upper triangular matrices with ones along the
principal diagonal.

It is routine to verify that the space of functions that transfakatovariantly with
respect tar@ form a subspace of which is invariant under the right actio®, of G on
F. With the obvious modifications we define weight vectors and highest weight vectors for
the right actionR of G on F, obtaining a subspace @&-covariant vectors that is invariant
under the left actiorL.. Since we wish to distinguish between the weights of the left and
right actions, we say thaf € F is a weight vector of the joint actioh ® R with weight
(a1op) if

L O R(dy, dp) f (z) = n“Y (d))n 2 (do) f (2).

Similarly we say thatf1 ® f» € F® F is a weight vector of the tensor product actib® R
with weight (a1]ay) if

L ® R(d1,d2) f1® f2(z) = 7“V(d) 7P (d) f1 ® f2(2).

Proposition 4.3.For eachm € Z, and anyl, J shuffles ofM, the functionA’ is a weight
vector of the representatiah with weightw,; and a weight vector of the representati®n
with weight w;, wherew; andw; are the simple weights defined in (5). Thus, is also
a weight vector for the joint actiofh ® R with weight (w;|wy).

Proof. We prove the case faR.
Letd € D, z € G?9 then

L@d)A'(z) = Al(d'z)

sinced' =d = Al (dz)

by lemma 3.6 = Z AX@)AL(2)
K

since AX (d) = 0 unlessk = J = ANd)A(2)

=1 @)A(z).



Dual representations off L, and decomposition of Fock spaces 2771

Corollary 4.4. For eachm € Z, the functionA% is a highest weight vector for both the
representationd. and R, with highest weightw,,, wherew), is the fundamental weight

defined in section 2.3. Thus}% is also a highest weight vector for the representation

L O R with highest weight(w,|wy). In addition, A} ® AT is a highest weight vector of
the representatiod ® R with highest weightwuy|wn).

Using a similar argument we have the following.

Proposition 4.5.For m1, m, € Z and for I, Ji shuffles ofM,; and I, J, shuffles ofM,,

the function AﬁAZ is a weight vector ofL with weight w; + w;,, a weight vector of
R with weight w,, + @y, and so a weight vector of the joint actidn(®) R with weight
(o, + wplon + ).

Corollary 4.6. For anymy, m, € Z, the functionA%iA%i is a highest weight vector of the
representationg. and R, with weightwy, + wy,, and so also a highest weight vector of
the joint actionL () R with weight (wy, + @um,lou, + wu,). By induction, the function

k kn
A = (ay) o (840)

n

is a highest weight vector of the representati@anand R with highest weight

n
w = E kia)ﬂi
i=1

and a highest weight vector of the joint actiar(®) R with weight (w|w).
The following result is fundamental.

Theorem 4.7The map®™ : F™ (V) — F defined on basis elements by — AIM
(and extending by linearity) intertwines the representatibnsnd L. Similarly, the map
W . F(VY) — F defined on basis elements by — Aj, (and extending by

linearity) intertwines the representatioRsand R.

Proof. We prove for the ma@™. Let A € G, v; € F™ (V). Then for anyz; € G¥9we
have

O™[L(A)(2)
by lemma 3.3 = o™[) " AL (A1)
J

by linearity =" A} (A" [v,](z)
J
= > alale)
J
=Y Alnal @)
J

by lemma 3.6 = AIM(A’z)
= L(A)AT(2)
= L(A)®"[v/](2).
O

Remark 4.8The above theorem is true if, for example, we use the map— AX for
any fixed shufflek of M. We will see that the choice o¥/ instead ofK will give us the
‘lowest highest weight copies’ of ™ (V) and F'™ (V') in F.
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Since for eacn € Z, the spaces ™ (V) and F"™ (V') are irreducible representations
of G, we have the following.
Corollary 4.9. For eachn € Z, let L,,, be the image ofb™ (F(V)). Then.,,, is the
left submodule ofF generated by the actioh of G on the highest weight vectoasr,
with highest weightoy,, and£,,,, is an irreducible highest weight representatiorGoin F.
Similarly, if R,,, is the image of¥'™ (F™ (V")), thenR,,, is the right submodule of
generated by the actioR of G on the highest weight vectcﬁs% also with highest weight
wy, andR,,, is an irreducible highest weight representationGofn 7.

By a routine application of lemmas 3.6 and 3.9 we have the following.

Proposition 4.10.If I # I’ (respectivelyJ # J' ), then all left (respectively right)

translations of A/ are orthogonalto all left (respectively right) translations OM’
~—

(respectivelyA’). Hencel,,, andZL,,, (respectivelyR,, andR,,, ) are orthogonal
M M M M
wheneverM; # M,.

The next several propositions expand on these ideas.
Proposition 4.11.Let I; be a shuffle ofM; and I be a shuffle of\/,. Then the map
oM g @) F(Vy @ FUM(V) — F
given by
M

M
21 A 22
v @ vy, > A TAY

intertwines the representati(fn on F(V) & F(V) and the representatiahb on F.
By induction, the mapp™ @ ... ® ") : FM)(V)® ... ® F™) (V) — F defined
on basis elements by

M, M,
U11®'~~®l)1” [ Ah "'AI,,

intertwinesZ and L.
Furthermore, for each: € Z the map
™M ow™  FM(WV)® F™ (V') — F
defined on basis elements by
v @V, — Af

intertwines the representatidn® R of GL., on F™ (V)® F™ (V') and the representation
LORof GL,, on F.

Proof. Apply lemmas 3.3, 3.6 and the appropriate definitions. O
By iteration we have the following.
Proposition 4.12.For simplicity of notation let

n
w=) By,
i=1

where some of thé/; may be repeated. Ld4, J; shuffles ofM,, ..., I,, J, shuffles of
M , and set

o

(I)("’) — (b(ml) R ® cb(mn)
Y@ — ymy) R ® g ()
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Then the map
@ OWW  FMWV)@ @ F"(V)QF"™ (V)@ @ F" (V') — F
defined by
V11®"'®Vln®"t]1®"'®vtj,l — AIJlIAIJ
intertwinesL @ R andL O R.
The following generalizes corollary 4.9.

Corollary 4.13.Let w and A be as in corollary 4.6, and let,, be the submodule of
generated by the left actioh of G on A, and letR,, be the submodule of generated
by the right actionR of G on A®. Then £, and R,, are irreducible highest weight
representations af; with respect to the actions and R with highest weightv. Similarly
let Z) be the sub-bimodule ofF generated by the joint actioh ) R on A®. Then
I is an irreducible highest weight representation of the joint actigf) R with highest
weight (w|w).

One checks from the definitions that products of determinant functions are orthogonal

<
whenever any of the terms are orthogonabr example,
—
A AT and ALA"
ST J =T

are orthogonaif any of I # I;, J; # J; etc. From this and proposition 4.10 we have the
<«
following.

Corollary 4.14.7“ andZ’ are orthogonaif o # o'
«~—

We further generalize our situation with the following theorem.
Theorem 4.15Let
2= o (FOm@FIwv)
be as in (6). Then the map in proposition 4.12 extends to the map
POV :Q— F
defined by
POV =) (@ ow").

Thus the image

dOY(Q) = Z AR

is a multiplicity-free orthogonalalgebraic direct sum of irreducible highest weight
A
submodules.
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4.3. Decomposition af
Theorem 4.16Let P be as in section 3.2. Then the functian® ¥ maps2 onto P.

Thus
P=>) @1

where the orthogonallgebraic direct sum is taken over distinct highest weights
-

Proof. From the classical case [20] we have, for an¥ ¢, that the space of polynomials
P,.: decomposes into an orthogonal algebraic direct sum

Pou =y OL (16)

where eachZ!” is the submodule of?,, generated by the actioh ® R restricted to
GL(s, 1) x GL(s, 1) on the highest weight vectax'?’ (the restriction ofA©@ to G3'9), i.e.

I = {AY)1A, B € GL(s, 1)}
where, as in section 4.1,

A () := A (A'zB) for all z € G349
and the sum in (16) is taken over all

w = Iikia)ﬂi
i=1
with s < m; < tf. (In what follows we will describe this situation by writing< o < ¢.)
Now certainlyZ> € 7, and since
d@ o \I,(w)(F(w)(V) ® F(w)(V')) — 7@
we have that the intertwining map
@U@ FOV)® F(V') — I\

is onto for anys < ¢.

Since
P= lim P,
§—>—0Q
t—>+00
the result follows. O

SinceF = P we have
F=Y &I¢

where the hat indicates closure of the algebraic direct sum, and so the sum can be ‘infinite’,
a notion we now make precise.

1 Here the classical signatuse= (a1, ..., a,) with
arzoap>---20, 20
corresponds to the highest weight= (..., ws_1, s, ..., @, w41, . ..) With

=1 =0y 201 2 2o =wg1=... 20
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Theorem 4.17Any f € F can be written as a series of orthogoterims
%
f=2_ 0

where f@ e T, which converges in the topology of the projective limit.

Proof. Let f € F, then for anys’ < s <t < ' we know that there is a sequengg'”},,
in Fy, such that

ff’,f’ = Z x(’tto’)

w

and which restricts to
fa‘l = Z fs(tw)‘
w

Since F = lim F,,, there exists a unique sequengé®’} € F that restricts tof £’}
<«
for all s <t. Since

fu=Y £ forall s <t
we have that
=X

in the topology of the projective limit. That is, {tv} denotes the collection of all highest
weights, then the mafw} —> F completes the following commutative diagram.

f= Xw: . ()

fs’t’ = Z s(’ct(j)

w

fa=) [
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4.4. Representations (A @ F
As in section 4.2, consider the (exterior) tensor product representatipiR of G x G on
F ® F given by

L ® R(A, B)(f, 8)(Z) = L(A) f(Z) ® R(B)g(Z).
Since the map®™ : F™ (V) — F intertwines L and L, and the mapw™ :
F™ (V'Y — F intertwinesR and R, the map

(D(m) ® \IJ(m) : F(m)(V) ® F(m)(Vr) N ]_‘®]_‘
defined by

v @V, — AT ® Ay
intertwinesL ® R andL ® R. Thus, the actior. ® R of G x G on the highest weight vector
Aﬁ ® Aﬁ generatesC,,, ® R.,,, Which is then an irreducible highest weight submodule
of F ® F with highest weight(wy|wy). But the mapd™ © v of theorem 4.12 also
intertwinesL ® R andL ® R and so we must have that») andZ,, ®R.,,, are isomorphic
asG x G modules. This motivates the following.
Proposition 4.18Let w, ®“, ¥ be as in corollary 4.12. Then the map
e QU FM(V)@ @ F"(V)QF"™ (V)@@ F" (V) — F@F
defined by

! ' M, M, J1 Vi
vll®~-~®v1"®vh®---®vln > AL AT ® Ay Ay

intertwines L @ R and L @ R. Therefore, £, ® R, and Z are isomorphicG x G
modules.

Remark 4.191t is easy to see that the above isomorphism is given directly by

AT ® A —> A

4.5. Structure of irreducible modules

Returning to the simple case, whatg, is a fundamental weight, consider the submodule
Lo, ® Ra, of F ® F which is generated by the actidn® R of G x G on the highest

weight vectorAﬁ@ Aﬁ. Restricting the actio. ® R of G x G to the subgrougs x Id we
obtain a left submodulel{(G)Aﬁ] ® Aﬁ of £,, ® R, isomorphic toL,,,. Moreover, as
I varies over shuffles a¥/, the action ofG x Id on the vectorsxﬁ@m’M generates distinct
copies ofL,,, in L,, ® R, i.e. the submodulesL[(G)Aﬁ] ® A}, SinceAj, = W™ (v)
and thev; form a basis ofF ™ (V"), the functionsA}, form a basis ofR,,, and we have

(1) L., ® R., is a direct sum of copies of,,,, and also a direct sum of copies of
R.,- These copies are indexed by the &8t is a shuffle ofM}.

(2) By remark 4.19 we have thdt,, is isomorphic to a direct sum of copies 6f,, .
Each copy is generated by the left actibrof G on the functionA!, as/ ranges over all
shuffles ofM. B

(3) Similarly, Z,,,, is isomorphic to a direct sum of copies &,,, each generated by
the right actionr of G on the functionA?”.

One could say thab,, is the ‘lowest highest weight'.

We generalize as follows.
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Proposition 4.20.
(1) For

n
w = ; :wMi
i=1

(where some of thé/;, may be repeated) the irreducible x G submodulel, ® R,, of
F ® F is a direct sum of irreducible left submodules, each isomorphi€ oand each
generated by the actioh ® R of G x Id on the vector
Ayt A ® AL AL

wherel, is a shuffle ofM 4, ..., I, is a shuffle ofM,.

(2) The irreducibleG x G submoduleZ® of F is isomorphic to a direct sum of
irreducible leftG-modules, each a copy &,, and each generated by the left actibrof
G on the vector

I I
Aﬂl"'AM .

P

Similarly, Z® is isomorphic to a direct sum of righ&-modules, each isomorphic to
R, and each generated by the right acti®ron the vector

M, M,
ARt LA

From this and the remarks following corollary 4.13 we have the following.
Corollary 4.21.Let £y, ...

I I
AMl"'AM

P

1, be the irreducible left submodule generated by the vector

and letL;; ., be the irreducible left suomodule generated by the vector
I I
Aﬂll N

1, then f and f’ are orthogonal
%

.....

Now suppose that’ is any irreducible left submodule of. Since F = Y &I,
L' must intersect somg non-trivially. But the intersection of left submodules is a left
submodule, and each® is a direct sum of irreducible left submodules, 8omust be a
direct summand of @ for somew. Therefore we obtain the following.

Proposition 4.22 For each highest weight, 7’ is the isotypic componentharacterized
by w. That is, eaclZ® is the direct sum o&ll irreducible left submodules isomorphic to
L,. Similarly, eachZ is the direct sum of all irreducible right submodules isomorphic
to R,.

4.6. Characterization of highest weight modules

Foranyl e Zletg = (..., B, Bi+1, Bi+2, - - .) be a sequence of non-negative integers with

<o 2 B = By = Bii2 = -+ (an example of particular interest is wh@nis a highest

weight). Let5 denote the Borel subgroup of upper triangular matrice§ ity,. That is
B={Be G|Bi,j =0 fori > it

For eachp we define a holomorphic charactef? : B — C* (the non-zero complex

numbers) by

7 PB) =] B/ for all B € B.
€L
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Note thatz ® (B) is well defined for eactB € B. We say a functionf € F transforms
R-covariantly with respect t& with signaturep if

R(B)f(Z) =n®(B)f(Z) for all B € BandZ e G®9,

Clearly the set of all such functions is a subspacé ptienoted byv ®, which is invariant
under left translation bys. Via a routine application of lemma 3.6 we see thah(f is a
highest weight vector, then®@ e V@, and soL, ¢ V. In fact, if we definel,,, and
V') in the obvious way, that is

L. = left submodule generated by the action®£.(s, ) on A for s < w < ¢
v\ = subspace off, , that transformsk-covariantly with respect to
By = B[ | GL(s. t) with signaturen

then by the Borel-Weil theorem, the two coincide. Taking the limittas— —oo and
t —> oo we have the following.

Proposition 4.23.The highest weight left (respectively right) submodule7ofvith highest
weight w is characterized by transforming-covariantly (respectively.-covariantly) with
respect to the Borel subgroup, with signature

4.7. Representations ¢fL, in § and decomposition &§

Here we discuss our previous results in the more familiar context of an inductive limit of
Hilbert spaces.

Restricting the actiond and R of GL., on F yields the classical left and right actions
we call Ly, and Ry, of GL(s, 1) on Fy ;. If w =} kiwy, as before we use the notation
s < w < t to denote the situation where< m; < ¢ in the above sum. As in the proof
of theorem 4.16, Iefs(ﬁ”) be the subGL(s, ) x GL(s, t) bimodule generated by the action
Ly O Ry on AY with s < w < ¢. Then it is well known thatZ!*” is an irreducible
representation oG L(s, 1) x GL(s,t). We also denote by, and R, the irreducible
submodules ofF; ; generated by the left and right actions on the highest weight vmﬁtﬁr

Now for s’ < s < ¢t < ¢’ the actionLy, (or R,,) of GL(s, t) on F,, commutes with the
isometric embedding

Inc : Fyo < Fyu
and so from the properties of the inductive limit there arise§ mrepresentation off L.,
that we call L (or R), uniquely defined by

L@ f=Lu@f wheneverg € GL(s,t) and f € F,

and we construct the representations®© R and L ® R in the obvious way.

Set
(®)
3@ = IndZ{.

Since eachZ! is a closed subspace of,., (being finite dimensional)7 is a closed

subspace of in the inductive limit topology induced by the norm. Clea’ﬂy”) andIﬁf’,)
are orthogonal wheneves # «’, So in this cas&® andJ“" are also orthogonal. In an
identical fashion we define

£, =Ind L,y
R, = INd Ry
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Theorem 4.24Let 3@ be the inductive limit In€“. Then the representation © R of

— —

GLy x GLs onJ s irreducible.
Proof. We first adapt a result that we will quote from Dixmier [4].

Theorem 4.25Let A be an algebra with an involution, |&f be a Hilbert space, and let
be a representation od in H. Let L(H) denote the space of linear operators’@n Then
the following are equivalent;

(i) the only closed subspaces &f which ares invariant are{0} andH.

(ii) The only elements ofZ(H) which commute withr (A) are the scalars.

(iii) Every vector inH is a cyclic vector.

Now let £(3“)) be the space of linear operators ft’, and suppose thad € L£(J)
commutes with the operatofs® R(A, B) for all A, B, € GL4,. Let proj, : 3@ —s T

be the projection operator Gf onto its subspac&®’. Then proj, O commutes with

the operators, ® R (A, B) (for all A, B, € GL(s, 1)) in £(Z), and since eacE” is

irreducible, by the above theorem 4.25, pr6j must be a scalas,,. But whenevers’ < s
andt’ > r, eachF, , embeds isometrically int& ., Soc,, must be thesamescalarc for all
s < t, and hence the only operator (J3) that commutes witl© is the scalar operator
c. So by theorem 4.25 again, the spac® must be irreducible. ]

By an identical argument we have the following.

Proposition 4.26.The actions [ and R of GL, on the submodule£, and R, are
irreducible.

By a routine application of the above techniques we have the following.
Theorem 4.27Let V“’be as in section 4.6, 16 = IndV,”’. Then U transforms

R -covariantly with respect to the Borel subgroup with signatur@nd3«@ = ¢,.

We have noted before th@, , is the orthogonal algebraic direct sum

Pu= > &I for all s <t 17)

s<w<t

so that¥; , is the Hilbert space direct sum

F= Y &1y for all s < 1.

s<w<t

We next obtain a similar decomposition for the inductive lifit

Theorem 4.28Let § be the inductive limit Ind7, ;, let 3@ be the inductive limit Ind*”,
then

F=> &3«

where the Hilbert space direct sum is taken over distinct highest weighasid eacHy®
is an irreducibleG L., x GL module with respect to the joint actidh® R.
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Proof. We first note that the sum (17) is an algebraic direct sum, so we may interchange
the summation and inductive limit, that is

(,B = IndPS,[

= Ind ( > @Iﬁ?”)
=Y ® @Iﬁ;‘”

=> a7,

Thus,

O

Finally, we note that we can realize the notion of highest weight vectofs iy the
abstract symboh (@ in the sense that, for any< o < ¢ the restriction ofA® to F;, is
a highest weight vector with highest weight even though the function @ itself is not
in §. By theorem 4.25, any such function generates an irreducible representation.

4.8. Concluding remarks

() In this paper we have realized all irreducible highest weight representatiog. Qf
on a projective limit of Fock spaces. The representations on this space seem the most
natural generalizations of the finite-dimensional case, in the sense that highest weights and
highest weight vectors have clear generalizations, and the restriction maps give us back the
finite-dimensional cases. In this context, we also discuss representations on the inductive
limits of Fock spaces, which similarly project onto the finite-dimensional cases. We further
note that we could induce a Hilbert space structurefofrom the wedge space via the
intertwining map, but this does not seem very fruitful.

(2) If

Uso = {A € GLo|AAT = 1d}

then everything proven aboGtL, is also true folU, via the standard argument of Weyl's
‘unitarian trick’.
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